Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method of selecting DNA for resequencing accelerates discovery of subtle DNA variations

16.10.2007
Technology could help uncover previously unrecognized disease-related differences

A new technology developed by scientists at Emory University will allow researchers to more easily discover subtle and overlooked genetic variations that may have serious consequences for health and disease. Called Microarray-based Genomic Selection (MGS), the research protocol allows scientists to extract and enrich specific large-sized DNA regions, then compare genetic variation among individuals using DNA resequencing methods.

The technology reported will be published online on Oct. 14 and will appear in the November print issue of the journal Nature Methods. Lead author is David Okou, PhD, postdoctoral fellow in the laboratory of Michael Zwick, PhD, assistant professor of human genetics at Emory University School of Medicine.

The goal of most human genetics researchers is to find variations in the genome that contribute to disease. Despite the success of the human genome project and the availability of a number of next-generation DNA sequencing platforms, however, the lack of a simple, inexpensive method of selecting specific regions to resequence has been a serious barrier to detecting subtle genetic variability among individuals. The Emory scientists believe that goal will be much more obtainable thanks to MGS.

MGS uses DNA oligonucleotides (probes) arrayed on a chip at high density (microarray) to directly capture and extract the target region(s) from the genome. The probes are chosen from the reference human genome and are complementary to the target(s) to capture. Once the target is selected, resequencing arrays or other sequencing technologies can be used to identify variations. The Emory scientists believe MGS will allow them to easily compare genetic variation among a number of individuals and relate that variation to health and disease.

"The human genome project focused on sequencing just one human genome--an amazing technological feat that required a very large industrial infrastructure, hundreds of people and a great deal of money," says Dr. Zwick. "The question since then has been, can we replicate the ability to resequence parts of the genome, or ultimately the entire genome, in a laboratory with a single investigator and a small staff" The answer is now 'yes.'"

Geneticists have found many different types of obvious gene mutations that are deleterious to health, explains Dr. Zwick, but more subtle variations, or variations located in parts of the genome where scientists rarely look, may also have negative consequences but are not so easily discovered.

Other methods for isolating and studying a particular region of the genome, such as PCR and BAC cloning (bacterial artificial chromosomes) are comparatively labor intensive, difficult for single laboratories to scale to large sections of the genome, and relatively expensive, says Dr. Zwick.

Whereas typical microarray technology measures gene expression, MGS is a novel use of microarrays for capturing specific genomic sequences. For the published study, a third type of microarray--a resequencing array--was used to determine the DNA sequence in the patient samples.

"The logic behind the resequencing chip is that you design the chip to have the identity of the base at every single site in a reference sequence," says Dr. Zwick. "You use the human genome reference sequence as a shell and you search for variation on the theme. This alternative new technology allows a regular-sized laboratory and single investigator to generate a great deal of data at a cost significantly less than what a sequencing center would charge," Dr. Zwick says.

Holly Korschun | EurekAlert!
Further information:
http://www.emory.edu

Further reports about: DNA MGS Sequencing genetic variation human genome resequencing subtle

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>