Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First high-res 3D structures of mammalian HSP90 protein solved

16.10.2007
Key to better targets for AIDS, sepsis, cancer drugs

Dr. Dan Gewirth, Hauptman-Woodward senior research scientist, has just solved the structure of the first mammalian GRP94 protein implicated in immune diseases such as sepsis, AIDS and certain cancers. His work is being published today in a cover article in a top scientific journal - Molecular Cell.

Gewirth’s study confirms his 2001 hypothesis that this protein – GRP94 – is from the same family as the better known HSP90 proteins. As ligand-regulated chaperones – proteins that help other cellular proteins achieve their active shapes, the HSP90s are key players in cellular regulation and recognition. The HSP90 proteins have been the subject of increasing international interest as scientists have discovered that they can be targeted therapeutically with drugs that lead to either stimulation as well as inhibition.

For example, inhibitors of HSP90s are being developed as therapies for diseases ranging from cancer to sepsis, and drugs that stimulate HSP90 action may be appropriate therapies for diseases involving protein folding, such as cystic fibrosis, prion diseases , and Alzheimer’s Disease.

... more about:
»GRP94 »Gewirth »Hsp90 »Protein »Sepsis »mammalian

Since 2001, Gewirth and his lab have been using the technique of X-ray diffraction to solve the first high-resolution structure of this protein from mammalian origins, to understand its function and to determine if it is indeed a member of the HSP90 family of proteins. The structure and activity patterns of this protein prove conclusively that this is indeed a member of the same family.

“Our work opens the door to a more intensive evaluation of this protein both from a mechanistic as well as a therapeutic point of view. In addition to aiding our understanding of the fundamental biology of chaperone-mediated protein folding, this work lays the foundation for the design of drugs that specifically target individual members of the hsp90 family” Gewirth, who also holds a post as an associate professor in the Structural Biology department of the University at Buffalo which is housed at the Hauptman-Woodward Medical Research Institute, said.

Why Is This Important?

This is groundbreaking work for a number of reasons: It is the first high resolution picture of any member of the hsp90 family. High resolution is needed for a detailed understanding of protein function. It is also the first structure of a mammalian member of the hsp90 family. This is important since drugs and other therapeutics need to be developed for human use, and thus must target the mammalian protein. Finally, the work shows for the first time how members of the hsp90 family of chaperone proteins can differ from each other, while still being part of the same overall family.

Scientific Understanding

The mammalian member of this protein family is different than those previously studied which were solved from either bacteria or yeast. Human energy production and consumption rates are more similar to those found in the GRP94 proteins than to the more widely studied HSP90 proteins. This means that the insights gained by a greater scientific understanding of how GRP94 works will have more direct applications to human diseases.

Medical Implications and Drug Development

Inhibitors currently are being designed for HSP90 in an attempt to treat the diseases in which HSP90 plays a role. However, these are broad-spectrum inhibitors of all HSP90s which means that unwanted side effects may occur. The Gewirth lab’s work clarifies GRP94’s place in this family and has already stimulated interest in this chaperone as a drug target. This understanding would allow for the long-term development of a family of drugs that could be narrowly targeted for individual proteins, for example specifically treating sepsis only.

Economic Impact

Just as companies have been founded to develop HSP90 inhibitors, the same potential exists here. “This will spur a new line of inquiry into GRP94. While this work is its infancy, medicinal chemists will be interested in developing GRP94-targeted drugs,” Gewirth said.

Tara A. Ellis | EurekAlert!
Further information:
http://www.hwi.buffalo.edu

Further reports about: GRP94 Gewirth Hsp90 Protein Sepsis mammalian

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>