Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bouncing Bucky Balls

16.10.2007
Bucky balls have the moves

C60 molecules have an intriguing ball-shaped structure that suggests several interesting possibilities for motion on surfaces. Indeed, researchers have found that the passage of electrons through a bucky ball in a transistor is correlated to the spinning of the ball around its center of mass.

Moreover, since bucky balls look like molecular ball bearings, it has been thought that they may be useful as lubricants for use in automobile brakes. Now a team of researchers at the University of Bologna (Italy) and the University of Liverpool (UK) have carried out detailed molecular dynamics simulations to understand the motion of bucky balls on metal surfaces.

Francesco Zerbetto and Gilberto Teobaldi have found that C60 molecules exhibit a wide range of molecular motions on surfaces. The bucky balls spin and bounce on the surface and also show an intercage rattling motion that Zerbetto says is similar to that of billiard balls in a partly filled roll-a-rack triangle. The simulations have been carried out as a function of temperature and model the movement of several bucky ball molecules over times ranging up to one nanosecond. There is some transfer of charge from the gold surface to the bucky ball that helps in the adsorption of these molecules at the surface.

... more about:
»Molecules »Motion »Simulation »Zerbetto

The researchers have found that with increasing temperature the cages move away from the gold surfaces resulting in a lower frequency of bouncing. The bouncing frequencies obtained by simulation match very nicely with experimental measurements of single-molecule bucky-ball transistors, corroborating the validity of the simulations.

The researchers have found that the bouncing of the cage on the surface and the intercage rattling govern the friction-related properties of the bucky balls on a surface. “The strong van der Waals interactions of the bucky balls with neighboring atoms makes the friction far too high for lubrication”, said Zerbetto, but he is hopeful that doping or chemical modification can be used to separate the bucky balls to get them to act more like ball bearings.

Author: Francesco Zerbetto, University of Bologna, http://www.ciam.unibo.it/sitcon/

Title: C60 on Gold: Adsorption, Motion, and Viscosity

Small 2007, 3, No. 10, 1694–1698, doi: 10.1002/smll.200700111

About Small: Micro and Nano: No small Matter. Science at the nano- and microscale is currently receiving enormous wordwide interest. Published by Wiley-VCH, Small provides the very best forum for experimental and theoretical studies of fundamental and applied interdisciplinary research at these dimensions. Read an attractive mix of peer-reviewed Communications, Reviews, Concepts, Highlights, Essays, and Full Papers.

Francesco Zerbetto | Small
Further information:
http://www.ciam.unibo.it/sitcon/
http://pressroom.small-journal.com
http://www.wiley-vch.de

Further reports about: Molecules Motion Simulation Zerbetto

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>