Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Medical Nanoimaging Pinpoints Cause of Cataracts

16.10.2007
At the Institut Curie, Simon Scheuring, beneficiary of the Inserm Avenir program and coordinator of the CNRS/Inserm “Atomic force microscopy (AFM) of proteins in native membranes” team(1), has for the first time observed a diseased tissue at very high resolution using atomic force microscopy (AFM).

By studying the membranes of cells in a patient’s eye cataract, Scheuring has discovered the molecular cause of this disease. This is the first time that high-resolution AFM imaging of a diseased tissue has yielded information on the single molecule level of the disease. AFM has emerged from the state-of-the-art laboratory to bring us medical nanoimaging. These results are now online in the Journal of Molecular Biology.

The eye’s lens focuses light and forms a sharp image on the retina thanks to the organization and specific properties of its constituent cells (see box overleaf). As in all tissues, cellular exchanges are essential for nutrition and removal of waste products, but in the eye they must nonetheless be adapted to the particular properties of the lens. The membranes of lens cells contain protein assemblies, the aquaporins and connexons (2): the former act as water channels and the latter as channels for metabolites and ions. Together these membrane proteins ensure cell adhesion.

Using atomic force microscopy (AFM), which images the surface of a sample at a precision of one nanometer (one billionth of a meter), Simon Scheuring’s team at the Institut Curie is studying how these protein assemblies function. An atomically sharp tip is scanned over the sample surface and its movements are tracked by a laser. The resulting data can be used to draw a topographical map of the sample. By comparing assemblies of aquaporins and connexons in membranes of healthy and diseased lens cells, Scheuring and colleagues have identified the biological changes that cause cataracts (see box overleaf).

In this senile cataract, lack of connexons prevents formation of the channels ensuring cell to cell communication. These molecular modifications explain the lack of adherence between cells, waste accumulation in cells, and the defective transport of water, ions, and metabolites in a lens with a cataract.

This is the first time that high-resolution AFM imaging of diseased tissue has shed light on the molecular cause of a disease at the single membrane protein level. A step towards medical nanoimaging has been taken with atomic force microscopy.

The lens
The specific properties of the eye’s lens cells enable the lens to function correctly. These cells have no nucleus or organelles, such as mitochondria, and are unable to perform certain biochemical functions essential for their nutrition, and therefore depend on transmembrane channels (3) for transport of water, ions, and metabolites, and for waste removal. These cells are full of so-called lens proteins (crystallins), which ensure lens transparency. To avoid any loss of light, the lens is avascular and its network of cells is extremely compact: the gap between neighboring cells must be less than the wavelength of visible light.
The cataract
The cataract results from opacification linked to the hardening of the lens. Age-related (senile) cataracts are by far the commonest, and affect more than one in five of the over-65s, over one in three of the over-75s, and two thirds of people over 85 years of age. Cataracts cause reduced image sharpness, blurred vision, and sensitivity to light and glare. The only effective treatment for cataracts at present is surgery, in which the opaque lens is removed and replaced by an artificial lens. Cataracts are the main cause of blindness in the third world and explain the sight loss of 40% of the world’s 37 million blind.
(1) “Atomic force microscopy of proteins in native membranes” team in the Curie Physical Chemistry research unit UMR 168 CNRS/Institut Curie directed by Jean-François Joanny.
(2) A connexon is an assembly of 6 connexin molecules and forms a gap junction between the cytoplasm of two adjacent cells.
(3) “The supramolecular architecture of junctional microdomains in native lens membranes”

N. Buzhynskyy, R. Hite, T. Walz, S Scheuring. EMBO R. January 2007, vol. 8, p. 51-55.

Catherine Goupillon | alfa
Further information:
http://www.sciencedirect.com/science/journal/00222836

Further reports about: AFM Cataracts Microscopy Scheuring cataract connexon diseased

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>