Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemistry turns killer gas into potential cure

16.10.2007
During Carbon Monoxide Awareness week, EPSRC highlights how researchers are harnessing the gas for beneficial use

Despite its deadly reputation, the gas carbon monoxide (CO) could actually save lives and boost health in future as a result of leading-edge UK research.

Chemists at the University of Sheffield have discovered an innovative way of using targeted small doses of CO which could benefit patients who have undergone heart surgery or organ transplants and people suffering from high blood pressure.

Although the gas is lethal in large doses, small amounts can reduce inflammation, widen blood vessels, increase blood flow, prevent unwanted blood clotting – and even suppress the activity of cells and macrophages* which attack transplanted organs. The researchers have developed innovative water-soluble molecules which, when swallowed or injected, safely release small amounts of CO inside the human body.

... more about:
»CHEMISTRY »Hospital »blood

Research carried out in the last decade had already highlighted possible advantages, as CO is produced in the body as part of its own natural defensive systems. However, the problem has been finding a safe way of delivering the right dose of CO to the patient. Conventional CO inhalation can run the risk of patients or medical staff being accidentally exposed to high doses. Now for the first time, thanks to chemistry, an answer appears to have been found.

The new CO-releasing molecules (CO-RMs) have been developed in partnership with Dr Roberto Motterlini at Northwick Park Institute for Medical Research (NPIMR) and with funding from the Engineering and Physical Sciences Research Council (EPSRC).

“The molecules dissolve in water, so they can be made available in an easy-to-ingest, liquid form that quickly passes into the bloodstream,” says Professor Brian Mann, from the University's Department of Chemistry, who led the research. “As well as making it simple to control how much CO is introduced into a patient’s body, it will be possible to refine the design of the molecules so that they target a particular place while leaving the rest of the body unaffected.”

The CO-RMs consist of carbonyls** of metals such as ruthenium, iron and manganese which are routinely used in clinical treatments. They can be designed to release CO over a period of between 30 minutes and several hours, depending on what is required to treat a particular medical condition.

As well as boosting survival rates and cutting recovery times, the new molecules could ease pressure on hospital budgets by reducing the time that patients need to spend in hospital, for example after an operation. They could even help some patients to avoid going into hospital in the first place.

Professor Mann added: “This project provides an excellent example of how non-biological sciences like chemistry can underpin important advances in healthcare.”

hemoCORM Ltd, a spinout company set up in 2004 by the University of Sheffield and NPIMR, is now taking the research towards commercialisation. It is hoped that, after further development work, Phase 1 clinical trials can begin in around two years, with deployment in the healthcare sector potentially achievable in around five years.

Natasha Richardson | alfa
Further information:
http://www.epsrc.ac.uk/

Further reports about: CHEMISTRY Hospital blood

More articles from Life Sciences:

nachricht Cnidarians remotely control bacteria
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Immune cells may heal bleeding brain after strokes
21.09.2017 | NIH/National Institute of Neurological Disorders and Stroke

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>