Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemistry turns killer gas into potential cure

16.10.2007
During Carbon Monoxide Awareness week, EPSRC highlights how researchers are harnessing the gas for beneficial use

Despite its deadly reputation, the gas carbon monoxide (CO) could actually save lives and boost health in future as a result of leading-edge UK research.

Chemists at the University of Sheffield have discovered an innovative way of using targeted small doses of CO which could benefit patients who have undergone heart surgery or organ transplants and people suffering from high blood pressure.

Although the gas is lethal in large doses, small amounts can reduce inflammation, widen blood vessels, increase blood flow, prevent unwanted blood clotting – and even suppress the activity of cells and macrophages* which attack transplanted organs. The researchers have developed innovative water-soluble molecules which, when swallowed or injected, safely release small amounts of CO inside the human body.

... more about:
»CHEMISTRY »Hospital »blood

Research carried out in the last decade had already highlighted possible advantages, as CO is produced in the body as part of its own natural defensive systems. However, the problem has been finding a safe way of delivering the right dose of CO to the patient. Conventional CO inhalation can run the risk of patients or medical staff being accidentally exposed to high doses. Now for the first time, thanks to chemistry, an answer appears to have been found.

The new CO-releasing molecules (CO-RMs) have been developed in partnership with Dr Roberto Motterlini at Northwick Park Institute for Medical Research (NPIMR) and with funding from the Engineering and Physical Sciences Research Council (EPSRC).

“The molecules dissolve in water, so they can be made available in an easy-to-ingest, liquid form that quickly passes into the bloodstream,” says Professor Brian Mann, from the University's Department of Chemistry, who led the research. “As well as making it simple to control how much CO is introduced into a patient’s body, it will be possible to refine the design of the molecules so that they target a particular place while leaving the rest of the body unaffected.”

The CO-RMs consist of carbonyls** of metals such as ruthenium, iron and manganese which are routinely used in clinical treatments. They can be designed to release CO over a period of between 30 minutes and several hours, depending on what is required to treat a particular medical condition.

As well as boosting survival rates and cutting recovery times, the new molecules could ease pressure on hospital budgets by reducing the time that patients need to spend in hospital, for example after an operation. They could even help some patients to avoid going into hospital in the first place.

Professor Mann added: “This project provides an excellent example of how non-biological sciences like chemistry can underpin important advances in healthcare.”

hemoCORM Ltd, a spinout company set up in 2004 by the University of Sheffield and NPIMR, is now taking the research towards commercialisation. It is hoped that, after further development work, Phase 1 clinical trials can begin in around two years, with deployment in the healthcare sector potentially achievable in around five years.

Natasha Richardson | alfa
Further information:
http://www.epsrc.ac.uk/

Further reports about: CHEMISTRY Hospital blood

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>