Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Insulin Signaling and Amphetamines, Insomniac Fish and more...

16.10.2007
Insulin signaling and amphetamines

Abuse of psychostimulants such as amphetamine remains a serious public health concern. Amphetamines mediate their behavioral effects by stimulating dopaminergic signaling throughout reward circuits of the brain. This property of amphetamine relies on its actions at the dopamine transporter (DAT), a presynaptic plasma membrane protein responsible for the reuptake of extracellular dopamine. Recently, researchers have revealed the novel ability of insulin signaling pathways in the brain to regulate DAT function as well as the cellular and behavioral actions of amphetamine. In a new study published in the open-access journal PLoS Biology, Aurelio Galli, Jason Williams and colleagues used a model of Type I diabetes in rats to uncover how insulin signaling regulates DAT-mediated amphetamine effects. They show that by depleting insulin, or through selective inhibition of insulin signaling, they can severely attenuate amphetamine-induced dopamine release and impair DAT function. This study verifies in vivo that insulin signaling can dynamically influence the neuronal effects of amphetamine-like psychostimulants. Therefore, the insulin signaling pathway, through its unique regulation of brain dopamine, may be targeted for the treatment of amphetamine abuse.

Citation: Williams JM, Owens WA, Turner GH, Saunders C, Dipace C, et al. (2007) Hypoinsulinemia regulates amphetamine-induced reverse transport of dopamine. PLoS Biol 5(10): e274. doi:10.1371/journal.pbio.0050274

Insomniac Fish Shed Light on the Molecular Basis of Sleep Disorders

Sleep disorders are common and poorly understood. In humans, narcolepsy is a sleep disorder associated with sleepiness, abnormal dreaming, paralysis and insomnia. Neuropeptides called hypocretins are implicated in this disorder. A new study by Yokogawa and colleagues at Stanford University now reveals that fish, like mammals, sleep, and their hypocretin receptor plays an important role. Their work is published online this week in the open-access journal PLoS Biology.

The authors first generated a mutant fish in which the hypocretin system was disrupted. Intriguingly, this first fish sleep mutant did not display sleepiness or paralysis but showed a 30% reduction of its sleep time at night and a 60% decrease in sleep bout length compared with non-mutant fish. They also studied the relationships between the hypocretin system and other sleep regulatory brain systems in zebrafish and found differences in expression patterns in the brain that may explain the differences in behavioral effects. Their study illustrates how a sleep regulatory system may have evolved across vertebrate phylogeny. Zebrafish, a powerful genetic model that has the advantage of transparency to study neuronal networks in vivo, can be used to study sleep.

Citation: Yokogawa T, Marin W, Faraco J, Pe´zeron G, Appelbaum L, et al. (2007) Characterization of sleep in zebrafish and insomnia in hypocretin receptor mutants. PLoS Biol 5(10): e277. doi:10.1371/journal.pbio.0050277

Drug-Induced Epigenetic Changes Produce Drug Tolerance

In a study published this week in PLoS Biology, Dr. Nigel Atkinson, Dr. Yan Wang, and colleagues discovered that a startlingly large number of adolescents abuse organic solvent inhalants, common components of glues, paints and cleaning solutions. Their focus is on the molecular basis of tolerance—reduced response to a drug over time—which promotes increased drug consumption and accelerates the process of addiction. They use the fruit fly Drosophila melanogaster as a model system to determine how the nervous system becomes tolerant to the sedative effects of organic solvents. Sedating Drosophila with an organic solvent (benzyl alcohol) increases the expression of the slo K+ channel gene, which accelerates recovery from sedation. To elucidate the molecular mechanics underlying these phenomena, they documented dynamic changes in a chemical modification (called histone acetylation) that occurs within the slo regulatory region after sedation. These changes were mediated by a transcription factor and are linked to both slo induction and behavioral tolerance. Increased expression of slo channels are predicted to alter the signaling properties of neurons. This modification directly speeds the recovery from sedation.

Citation: Wang Y, Krishnan HR, Ghezzi A, Yin JCP, Atkinson NS (2007) Drug-induced epigenetic changes produce drug tolerance. PLoS Biol 5(10): e265. doi:10.1371/journal.pbio.0050265

Assessing Tumor Progression Factors by Somatic Gene Transfer into a Mouse Model: Bcl-xL Promotes Islet Tumor Cell Invasion

Cancer cells accumulate multiple genetic alterations. Some of these contribute to tumor development while others are a mere byproduct of genomic instability. To sort out whether a candidate gene can promote tumor development, Dr. Yi-Chieh Nancy Du, Dr. Harold Varmus, and colleagues have developed a novel experimental system using engineered viruses to deliver genes into premalignant lesions. They have used genetically engineered mice in which both an oncogene (SV40 T antigen) and a specific docking molecule for the virus are produced in ß ells in the pancreatic islets of Langerhans. Tumors form in only a subset of the islets expressing this oncogene, indicating that tumor development requires other events. Since these precancerous cells also express the virus docking molecule, they could deliver candidate progression genes via the virus to see whether they contribute to tumor progression. They show that genes encoding two proteins (a survival factor, Bcl-xL, and an inhibitory form of the cell adhesion molecule E-cadherin) can be delivered into premalignant ß-cells and enhance tumorigenesis. Both of these proteins were previously implicated in tumor progression, confirming that their technique can identify such progression genes. Moreover, we find that Bcl-xL promotes tumor cell migration and invasion by a mechanism distinct from its known role in cell survival.

Citation: Du YN, Lewis BC, Hanahan D, Varmus H (2007) Assessing tumor progression factors by somatic gene transfer into a mouse model: Bcl-xL promotes islet tumor cell

invasion. PLoS Biol 5(10): e276. doi:10.1371/journal.pbio.0050276

A Novel Snf2 Protein Maintains trans-Generational Regulatory States Established by Paramutation in Maize

Genetics is founded on the principle that heritable changes in genes are caused by mutations and that the regulatory state of gene pairs (alleles) is passed on to progeny unchanged. An exception to this rule, paramutation, produces changes in gene control that are stably inherited without altering the DNA sequence. Typically, one allele "paramutates," or silences, its counterpart by altering the structure of the chromatin surrounding the gene. Recent work in both maize and mice suggests that RNA molecules may be responsible for paramutations. Several genes are required to maintain the repressed paramutant state of a maize purple plant1 (pl1) allele, and in a recent study published in PLoS Biology by Dr. Jay B. Hollick, Dr. Christopher J. Hale, and colleagues report that one of these genes encodes a protein (RMR1) with similarity to a protein previously implicated in facilitating genomic DNA modifications via small RNA molecules. Genetic and molecular experiments support a similar role for RMR1 acting at a repeated sequence found adjacent to this pl1 gene. Although loss of these DNA modifications leads to heritable changes in gene regulation, the data indicates these changes do not represent the heritable feature responsible for paramutation. These findings highlight an unusual but dynamic role for repeated genomic features and small RNA molecules in affecting heritable genetic changes independent of the DNA template.

Citation: Hale CJ, Stonaker JL, Gross SM, Hollick JB (2007) A novel Snf2 protein maintains trans-generational regulatory states established by paramutation in maize. PLoS Biol 5(10): e275. doi:10.1371/journal.pbio.0050275

Andrew Hyde | alfa
Further information:
http://biology.plosjournals.org/perlserv/?request=get-document&doi=10.1371/journal.pbio.0050274
http://biology.plosjournals.org/perlserv/?request=get-document&doi=10.1371/journal.pbio.0050277
http://biology.plosjournals.org/perlserv/?request=get- document&doi=10.1371/journal.pbio.0050265

Further reports about: 1371/journal Amphetamine Bcl-xL Biol DNA DOI PLoS Signaling behavioral dopamine heritable hypocretin islet paramutation pbio slo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>