Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bio-engineering of blood vessels

16.04.2002


Blood vessel prostheses work best when the biochemical and mechanical properties match reality as much as possible and when they are made of biodegradable material. To this end tissue technologists grow natural vascular wall cells, endothelial cells, in a biodegradable tube made of collagen. According to Professor István Vermes tissue technologists are overly concerned with developing stem cells, necessary to build blood vessels, and not enough with the development of the vascular skeleton or scaffold, serving as a framework for those stem cells. During his address on the acceptance of the office of professor in the Molecular Aspects of Cell and Tissue Technology (on 11 april 2002) Vermes gave his vision on the bio-engineering of blood vessels. Besides professor at the University of Twente (The Netherlands) Vermes is doctor-clinical chemist and educator in the regional hospital Medisch Spectrum Twente in Enschede, and special professor in Laboratory Medicine at the Semmelweis Medical University in Budapest.

According to Vermes the key to successful development of artificial human tissue and organs lies in the structure and composition of the porous framework on which cells grow. "The traditional method starts with the development of a prosthesis made of artificial materials. I am concerned with bio-engineering a blood vessel, with biological materials as starting point. To this end we have to imitate all the natural functions of a vessel, including those of the scaffold with all functional biological materials such as growth factors. The skeleton has many more functions than just attaching and keeping cells together. It contains information in the shape of growth factors, cytokines and surface-properties for the growth and development of cells. The chemistry, the shape and way in which it moves under the influence of stress are of vital importance to influencing the behaviour of cells. The skeleton emits signals that are passed on to the inside of the cell via receptors on the cell surface.“ The future of the stem cell, how it develops or dies because of apoptosis, is dependent on the information coming from the vascular skeleton.

A blood vessel is built up, from the inside out, of six different layers of successively endothelial cells, elastic layers of among them smooth muscle cells with around them connective tissue with lymph vessels and nerves. Vermes: "Endothelial cells are important in translating changes in the blood through the production of materials that in turn take care of the balance between blood and the surrounding tissue. To understand the function of these cells in the blood vessel and for the production of the artificial vessel, we study this process by directing ourselves towards cell division (proliferation) and cell death (apoptosis) of endothelial cells." Vermes` strategy is to grow stem cells that differentiate themselves selectively to smooth muscle cells and endothelial cells, and developing a scaffold in the shape of a porous tube of biodegradable and flexible polymers. The stem cells are seeded in the skeleton in the presence of, among others, growth factors.

Bernadette Koopmans | alphagalileo
Further information:
http://www.utwente.nl/nieuws/pers/nieuw/

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>