Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vienna University of Technology is working on a new doping detection system

16.10.2007
One of the most common substances used for doping is EPO (erythropoietin), which is difficult to detect. In an era when there are increasing numbers of 'copies' of biotechnologically produced medications (biosimilars), it is also becoming more and more difficult to detect the difference between the body's own EPO and that made biosynthetically.

Chemists at Vienna University of Technology (TU) working jointly with ARC Seibersdorf, are developing a new analytical method, based on MALDI mass spectrometry, to track down the perpetrators of doping.

"With the aid of MALDI mass spectrometry, a method that is used for non-destructive desorption/ionisation of large molecules, especially biopolymers, we compare the deceptively similar 'humanised' form of EPO with the body's own substance. The two samples differ in the structure of the amino acid chains and/or in that of the associated sugar chains. Depending on the structure of these sugar chains and where they bind to, we can recognise whether this is a natural or biosynthetic EPO", explains Professor Günter Allmaier of the Institute of Chemical Technologies and Analytics at Vienna University of Technology.

Previous methods, for example isoelectric focusing, exhibit several weaknesses. First, it takes between two and three days to obtain the test results. Furthermore, the method is regarded as difficult to automate, and is based on antibodies which can detect EPO in urine but sometimes are too non-specific and do not distinguish the structure sufficiently precisely. Allmaier and his co-workers are concentrating now on a search for suitable analytical strategies that can detect recombinant EPO directly in urine. Lab-on-chip technology is to be combined with laser-based time-of-flight mass spectrometry. Following the testing phase, Allmaier estimates that the method may reach the patentable stage around 2009 and provide a valuable support in the fight against doping. Allmaier: "The most essential point in our strategy is that we are developing a method with which the EPO molecule itself is detected. All the other methods used so far have been indirect."

... more about:
»Allmaier »Doping »EPO »method

EPO preparations increase the production of red blood cells, which in turn transport more oxygen in the blood. As a result, the organism's performance improves. That is why EPO has been misused for doping as far back as the late 1980s, mainly in endurance sports such as cycling. Recently, Günter Allmaier received the John Beynon Prize Award 2007 for the most innovative publication in the journal Rapid Communications in Mass Spectrometry for the period 2005 to 2006 (http://www3.interscience.wiley.com/cgi-bin/fulltext/114298803/PDFSTART). This work was also the starting point for intensive cooperation with Dr. Reichel of ARC Seibersdorf's doping control laboratory.

Enquiries to:
Prof. Günter Allmaier
Vienna University of Technology
Institute of Chemical Technologies and Analytics
9/164 Getreidemarkt, 1060 Vienna, Austria
T +43/1/58801 - 15160
F +43/1/58801 - 15199
E guenter.allmaier@tuwien.ac.at
Sent by:
Mag. Daniela Ausserhuber
Vienna University of Technology - PR and Communication
13/E011 Karlsplatz, A-1040 Vienna, Austria
T +43-1-58801-41027
F +43-1-58801-41093
E daniela.ausserhuber@tuwien.ac.at

Werner Sommer | idw
Further information:
http://www.tuwien.ac.at/pr
http://www3.interscience.wiley.com/cgi-bin/fulltext/114298803/PDFSTART

Further reports about: Allmaier Doping EPO method

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>