Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genomic technologies to identify toxic chemicals should be developed

10.10.2007
A new report from the National Research Council recommends that government agencies enhance their efforts to incorporate genomic data into risk assessments of chemicals and medicines, and calls for a concerted effort to fully develop these methods' potential to protect public health.

Chemicals and drugs often cause health problems by altering gene expression and other cell activity, and research on these processes -- called toxicogenomic research -- could eventually lead to more-sensitive toxicity tests that can supplement current tests, the report says. Toxicogenomic tests can also pinpoint individuals with genetic vulnerabilities and help them avoid chemicals or medications that might make them ill.

A major, coordinated effort approaching the scale of the Human Genome Project is needed both to develop these technologies fully and to address the ethical challenges they pose, such as protecting the confidentiality of individuals' genetic information, the report says. As part of this endeavor, which could be called a "human toxicogenomics initiative," a new database is needed to consolidate the massive amounts of data currently being generated by toxicogenomic studies.

"We have just begun to tap the potential for toxicogenomic technologies to improve risk assessment," said David Christiani, chair of the committee that wrote the report, and professor of occupational medicine and epidemiology at the Harvard School of Public Health. "To harvest public health benefits requires both greater investment in research and coordinated leadership."

Toxic substances and drugs can potentially disrupt gene processes within cells, thus disturbing the cells' healthy functioning. In addition, an individual's genetic variations can leave him or her particularly susceptible to the effects of chemicals or side effects of medications. For example, studies have shown that certain inherited gene variations may make some people more prone to symptoms such as nausea and impaired muscle function when exposed to a common pesticide, the report notes.

Using new toxicogenomic technologies, researchers can identify toxic processes as they unfold at an early, molecular stage, long before symptoms appear. This knowledge will support the development of tests that can more accurately predict whether a chemical will be hazardous, and at what dose. The tests' sensitivity also could lead to better prediction and prevention of damage to fetuses at critical stages of development. Finally, toxicogenomic studies can inform individuals about their particular genetic vulnerabilities.

Given the potential of toxicogenomics to reduce and prevent health risks, regulatory agencies should expand their research and enhance efforts to use these methods to aid risk assessments, the report says. It also calls on the National Institute of Environmental Health Sciences and other stakeholders in government, academia, and industry to explore the feasibility of implementing a concerted human toxicogenomics initiative.

A crucial part of this effort will be the creation of a single public database to collect toxicogenomic data and integrate it with data on health effects generated by traditional toxicology studies, the report says. Such a database will let scientists see connections between activity at a molecular level and the symptoms that result, and decipher how multiple genetic reactions at the cellular level can combine to cause adverse outcomes. New studies will also be needed to generate data on the genomic effects of chemicals for which traditional toxicity data already exist. And a national "biorepository" for physical samples -- human blood and tissue, for example -- will be useful for future toxicogenomic studies. Every effort should be made to use samples already being collected for other research, the report urges.

The generation of data from such studies, and toxicogenomic research in general, raises a host of social, legal, and ethical questions that the new initiative needs to address -- including protecting the privacy of genetic and health data, the report says. Individuals might decide against genetic testing if there is a danger that health insurers or employers could access their information and use it to deny them insurance or work. Safeguarding the privacy of this data will be increasingly challenging as the use of electronic medical records grows.

Improved legislation is needed to protect the privacy, confidentiality, and security of health information anywhere it is collected, stored, and transmitted -- not just at organizations already subject to privacy rules under the Health Insurance Portability and Accountability Act. The decision to learn about one's genetic vulnerabilities should rest with the individual, the report says. And except in rare circumstances, people who choose to get tested to learn about their particular genetic susceptibilities to a workplace chemical should be allowed to decide for themselves whether to accept the risks involved in employment.

Sara Frueh | EurekAlert!
Further information:
http://www.nap.edu

Further reports about: Assessment Health studies technologies toxic toxicogenomic

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>