Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Herding aphids – how ‘farmer’ ants keep control of their food

10.10.2007
Chemicals on ants’ feet tranquilise and subdue colonies of aphids, keeping them close-by as a ready source of food, says new research published today (10 October). The study throws new light on the complex relationship between ants and the colonies of aphids whose sugary secretions the ants eat.

Scientists had previously established that certain types of aphids live in colonies where they are used as a food source by a neighbouring colony of ants. The ants have been known to bite the wings off the aphids in order to stop them from getting away and depriving the ants of one of their staple foods: the sugar-rich sticky honeydew which is excreted by aphids when they eat plants.

Chemicals produced in the glands of ants can also sabotage the growth of aphid wings. The new study shows, for the first time, that ants’ chemical footprints – which are already known to be used by ants to mark out their territory - also play a key role in manipulating the aphid colony, and keeping it nearby.

The research, which was carried out by a team from Imperial College London, Royal Holloway University of London, and the University of Reading, used a digital camera and specially modified software to measure the walking speed of aphids when they were placed on filter paper that had previously been walked over by ants. The data showed that the aphids’ movement was much slower when they were on paper that had been walked on by ants, than on plain paper.

... more about:
»Food »Footprint »aphid »honeydew

Furthermore, when placed on a dead leaf, where the aphid’s instinct is to walk off in search of healthy leaves for food, the scientists found that the presence of ants significantly slowed the aphids’ dispersal from the leaf. Lead author Tom Oliver from Imperial’s Department of Life Sciences explains how ants could use this manipulation in a real-life scenario:

“We believe that ants could use the tranquillising chemicals in their footprints to maintain a populous ‘farm’ of aphids close their colony, to provide honeydew on tap. Ants have even been known to occasionally eat some of the aphids themselves, so subduing them in this way is obviously a great way to keep renewable honeydew and prey easily available.”

However, Tom points out that the relationship between the ants and the aphids might not be that straightforward: “There are some definite advantages for aphids being ‘farmed’ like this by ants for their honeydew. Ants have been documented attacking and fighting off ladybirds and other predators that have tried to eat their aphids. It’s possible that the aphids are using this chemical footprint as a way of staying within the protection of the ants.”

Professor Vincent Jansen of Royal Holloway’s School of Biological Sciences, concludes: “Although both parties benefit from the interaction, this research shows is that all is not well in the world of aphids and ants. The aphids are manipulated to their disadvantage: for aphids the ants are a dangerous liaison.”

Danielle Reeves | alfa
Further information:
http://www.imperial.ac.uk

Further reports about: Food Footprint aphid honeydew

More articles from Life Sciences:

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

nachricht Scientists generate an atlas of the human genome using stem cells
24.04.2018 | The Hebrew University of Jerusalem

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Quantum Technology for Advanced Imaging – QUILT

24.04.2018 | Information Technology

AWI researchers measure a record concentration of microplastic in arctic sea ice

24.04.2018 | Earth Sciences

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>