Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mathematicians help unlock secrets of the immune system

10.10.2007
A group of scientists, led by mathematicians, has taken on the challenge of building a common model of immune responses. Their work will radically improve our understanding of the human immune system by allowing all the scientific disciplines working on it to have a common reference point and language.

The mathematicians, funded by the Biotechnology and Biological Sciences Research Council (BBSRC), will investigate how the different cellular components of the immune system work together and devise a theoretical and computational model that can be used by immunologists, mathematicians, computer scientists, physicists and engineers.

The model promises to help a multi-disciplinary research community work together to bring about medical advances for patients. The project, the Immunology Imaging and Modelling (I2M) Network, is highlighted in the quarterly research highlights magazine of the Biotechnology and Biological Sciences Research Council (BBSRC) this week.

The immune system is one of the most fascinating and complex systems in the human body and scientists still do not fully understand how it works. Immunology has traditionally been a qualitative science, describing the cellular and molecular components of the immune system and their functions. However, to advance our understanding of how the body fights disease there is a pressing need to better understand how the components work together as a whole and provide this information in a quantitative format which can be accessed by the entire scientific community.

... more about:
»discipline »help »immune »immune system

Dr Carmen Molína-Paris, network co-ordinator and researcher at the University of Leeds, explains: "A multi and cross-disciplinary, cohesive and active approach is urgently required. The ability to track parasites and cells in real time using novel imaging techniques is allowing exciting new insights and will help us measure the interactions between the different parts of the immune system. This will provide a theoretical and computational model of the immune system, giving a complete picture that researchers from across all disciplines can refer to and draw upon.

"Mathematical immunology is maturing into a discipline where modelling helps everyone to interpret data and resolve controversies. Most importantly, it suggests novel experiments allowing for better and more quantitative interpretations."

Steve Visscher, interim Chief Executive of BBSRC commented: "The new insight that this model will provide will naturally benefit the patient with the advances in healthcare it will lead to. BBSRC is committed to developing an active and cohesive cross-disciplinary community at the mathematics biology interface to enable a more quantitative and predictive biology."

Michelle Kilfoyle | alfa
Further information:
http://www.bbsrc.ac.uk

Further reports about: discipline help immune immune system

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>