Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Elephants' fear of angry bees could help to protect them

09.10.2007
At a time when encroaching human development in former wildlife areas has compressed African elephants into ever smaller home ranges and increased levels of human-elephant conflict, a study in the October 9th issue of Current Biology, a publication of Cell Press, suggests that strategically placed beehives might offer a low-tech elephant deterrent and conservation measure.

The researchers found that a significant majority of African elephants fled immediately after hearing the sound of bees, providing "strong support" for the idea that bees, and perhaps even their buzz alone, might keep elephants at bay. By contrast, the elephants ignored a control recording of natural white-noise, the authors reported.

"We weren't surprised that they responded to the threatening sound of disturbed bees, as elephants are intelligent animals that are intimately aware of their surroundings, but we were surprised at how quickly they responded to the sounds by running away," said Lucy King of the University of Oxford. "Almost half of our study herds started to move away within 10 seconds of the bee playback." King is also affiliated with Save the Elephants, a Kenya-based organization that aims to secure a future for elephants.

Earlier studies had suggested that elephants prefer to steer clear of bees. For instance, one report showed that elephant damage to acacia trees hosting occupied or empty beehives was significantly less than in trees without hives, the researchers said. In Zimbabwe, scientists have also seen elephants forging new trails in an effort to avoid beehives.

... more about:
»Researchers »Sound »beehives

In the new study, the researchers tested the response of several well-known elephant families in Kenya to the digitally recorded buzz of disturbed African bees. Sixteen of the 17 families tested left their resting places under trees within 80 s of hearing the bee sound, the researchers reported, and half responded within just 10 seconds. Among elephants hearing the control sound, none had moved after 10 s, and only four families had moved after 80 s. By the end of the 4 min sound playback of bee buzz, only one elephant family had failed to move, whereas eight families hearing the control sound had not moved.

This behavioral discovery suggests that bees might very well be a valuable addition to the toolbox of elephant deterrents used by farmers and conservation managers across Kenya, King said. She added that such innovative approaches are sorely needed "to avoid extreme solutions such as shooting problem animals."

She cautioned that the use of beehives to shoo elephants away might prove to have limited application and that more research is needed if we are to understand its effectiveness. "But if we could use bees to reduce elephant crop raiding and tree destruction while at the same time enhancing local income through the sale of honey, this could be a significant and valuable step towards sustainable human-elephant coexistence.”

Nancy Wampler | EurekAlert!
Further information:
http:// www.current-biology.com

Further reports about: Researchers Sound beehives

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>