Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

For Honey Bee Queens, Multiple Mating Makes a Difference

09.10.2007
The success of the “reign” of a honey bee queen appears to be determined to a large degree by the number of times she mates with drone bees.

That is what research by scientists in the Department of Entomology and W.M. Keck Center for Behavioral Biology at North Carolina State University suggests. Dr. Freddie-Jeanne Richard, a post-doctoral research associate; Dr. David Tarpy, assistant professor and North Carolina Cooperative Extension apiculturist; and Dr. Christina Grozinger, assistant professor of insect genomics, found that the number of times a honey bee queen mates is a key factor in determining how attractive the queen is to the worker bees of a hive. Their research was published Oct. 3 in the online scientific journal PLoS ONE (http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0000980).

A honey bee queen mates early in her life, Tarpy explained, but usually with multiple partners, the drones of another bee colony. Richard, Tarpy, and Grozinger found that the number of partners appears to be a key factor in making the queen attractive to the worker bees of a colony – the more partners, the more attractive the queen is and the longer her reign is likely to be.

The scientists also conducted experiments that suggest that the number of times a queen mates is a factor in altering the composition of a pheromone, or chemical signal, the queen produces. It is the composition of this pheromone that appears to attract the worker bees of a hive.

... more about:
»Drone »Grozinger »Pheromone »Tarpy »colony »inseminated »mated »multiply »semen

A honey bee colony consists of a single queen and several thousand sterile worker bees. Throughout most of her life, the queen’s job is to lay eggs. However, early in a queen’s life, she makes several mating flights. On these flights, she mates -- in midair -- with anywhere from one to more than 40 drones. The average number of drones with which a queen mates is 12. The queen stores the semen from her mating flights for the remainder of her life, two to three years for a long-lived queen.

However, some queens are not so long-lived. They are rejected by the workers of the hive. The research of Richard, Tarpy, and Grozinger sheds light on this rejection mechanism.

Because queens mate early in their lives and store semen, it stands to reason that queens that have mated multiple times and accumulate more semen might be more valuable to a colony. But Tarpy said researchers have not studied the impact of the number of times a queen mates on her physiology until now.

To determine the effect mating has on honey bee queens, the scientists artificially inseminated queens. It’s difficult to determine the number of times a queen mates under natural conditions. Some queens were inseminated with the semen from one drone, others with the semen from 10 drones. The scientists then put the queens in hives and observed them.

They found that worker bees paid more attention to the multiply inseminated queens. Worker bees demonstrate what is known as a “retinue response” to their queen; they lick her and rub their antennae on her. The retinue response to the multiply inseminated queens was more pronounced.

“This tells us the workers can tell how many drones the queen has mated with,” said Grozinger.

Like many animals, honey bees use pheromones to communicate. When Richard analyzed pheromone produced in the mandibular gland of honey bee queens, she found that pheromone composition changes dramatically after queens mate and that the number of times the queen mates appears to be a key factor in determining the extent of pheromone alteration.

Richard added that when worker bees were exposed to pheromone from queens inseminated with semen from one drone and queens inseminated with semen from multiple drones, the workers showed a preference for the pheromone from the multiply inseminated queens.

Richard added that an analysis of the mandibular gland pheromone found differences in the chemical profile of pheromone from once-inseminated and multiply inseminated queens. The scientists also found differences in the two types of queens in brain-expression levels of a behaviorally relevant gene.

“Our results clearly demonstrate that insemination quantity alters queen physiology, queen pheromone profiles and queen-worker interactions,” the scientists write in the PLoS One paper.

Tarpy said the research could have implications for bee breeding and for beekeepers. The research suggests that queens that mate with multiple partners are superior, so breeders may want to select for this behavior.

At the same time, beekeepers usually buy mated queens when they re-queen their hives. Tarpy said it should be possible to devise a test to determine if a queen has mated few or many times. Such a test would help beekeepers determine the quality of the queens they buy.

Andrew Hyde | alfa
Further information:
http://www.plosone.org/doi/pone.0000980

Further reports about: Drone Grozinger Pheromone Tarpy colony inseminated mated multiply semen

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>