Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

For Honey Bee Queens, Multiple Mating Makes a Difference

09.10.2007
The success of the “reign” of a honey bee queen appears to be determined to a large degree by the number of times she mates with drone bees.

That is what research by scientists in the Department of Entomology and W.M. Keck Center for Behavioral Biology at North Carolina State University suggests. Dr. Freddie-Jeanne Richard, a post-doctoral research associate; Dr. David Tarpy, assistant professor and North Carolina Cooperative Extension apiculturist; and Dr. Christina Grozinger, assistant professor of insect genomics, found that the number of times a honey bee queen mates is a key factor in determining how attractive the queen is to the worker bees of a hive. Their research was published Oct. 3 in the online scientific journal PLoS ONE (http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0000980).

A honey bee queen mates early in her life, Tarpy explained, but usually with multiple partners, the drones of another bee colony. Richard, Tarpy, and Grozinger found that the number of partners appears to be a key factor in making the queen attractive to the worker bees of a colony – the more partners, the more attractive the queen is and the longer her reign is likely to be.

The scientists also conducted experiments that suggest that the number of times a queen mates is a factor in altering the composition of a pheromone, or chemical signal, the queen produces. It is the composition of this pheromone that appears to attract the worker bees of a hive.

... more about:
»Drone »Grozinger »Pheromone »Tarpy »colony »inseminated »mated »multiply »semen

A honey bee colony consists of a single queen and several thousand sterile worker bees. Throughout most of her life, the queen’s job is to lay eggs. However, early in a queen’s life, she makes several mating flights. On these flights, she mates -- in midair -- with anywhere from one to more than 40 drones. The average number of drones with which a queen mates is 12. The queen stores the semen from her mating flights for the remainder of her life, two to three years for a long-lived queen.

However, some queens are not so long-lived. They are rejected by the workers of the hive. The research of Richard, Tarpy, and Grozinger sheds light on this rejection mechanism.

Because queens mate early in their lives and store semen, it stands to reason that queens that have mated multiple times and accumulate more semen might be more valuable to a colony. But Tarpy said researchers have not studied the impact of the number of times a queen mates on her physiology until now.

To determine the effect mating has on honey bee queens, the scientists artificially inseminated queens. It’s difficult to determine the number of times a queen mates under natural conditions. Some queens were inseminated with the semen from one drone, others with the semen from 10 drones. The scientists then put the queens in hives and observed them.

They found that worker bees paid more attention to the multiply inseminated queens. Worker bees demonstrate what is known as a “retinue response” to their queen; they lick her and rub their antennae on her. The retinue response to the multiply inseminated queens was more pronounced.

“This tells us the workers can tell how many drones the queen has mated with,” said Grozinger.

Like many animals, honey bees use pheromones to communicate. When Richard analyzed pheromone produced in the mandibular gland of honey bee queens, she found that pheromone composition changes dramatically after queens mate and that the number of times the queen mates appears to be a key factor in determining the extent of pheromone alteration.

Richard added that when worker bees were exposed to pheromone from queens inseminated with semen from one drone and queens inseminated with semen from multiple drones, the workers showed a preference for the pheromone from the multiply inseminated queens.

Richard added that an analysis of the mandibular gland pheromone found differences in the chemical profile of pheromone from once-inseminated and multiply inseminated queens. The scientists also found differences in the two types of queens in brain-expression levels of a behaviorally relevant gene.

“Our results clearly demonstrate that insemination quantity alters queen physiology, queen pheromone profiles and queen-worker interactions,” the scientists write in the PLoS One paper.

Tarpy said the research could have implications for bee breeding and for beekeepers. The research suggests that queens that mate with multiple partners are superior, so breeders may want to select for this behavior.

At the same time, beekeepers usually buy mated queens when they re-queen their hives. Tarpy said it should be possible to devise a test to determine if a queen has mated few or many times. Such a test would help beekeepers determine the quality of the queens they buy.

Andrew Hyde | alfa
Further information:
http://www.plosone.org/doi/pone.0000980

Further reports about: Drone Grozinger Pheromone Tarpy colony inseminated mated multiply semen

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>