Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

For Honey Bee Queens, Multiple Mating Makes a Difference

09.10.2007
The success of the “reign” of a honey bee queen appears to be determined to a large degree by the number of times she mates with drone bees.

That is what research by scientists in the Department of Entomology and W.M. Keck Center for Behavioral Biology at North Carolina State University suggests. Dr. Freddie-Jeanne Richard, a post-doctoral research associate; Dr. David Tarpy, assistant professor and North Carolina Cooperative Extension apiculturist; and Dr. Christina Grozinger, assistant professor of insect genomics, found that the number of times a honey bee queen mates is a key factor in determining how attractive the queen is to the worker bees of a hive. Their research was published Oct. 3 in the online scientific journal PLoS ONE (http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0000980).

A honey bee queen mates early in her life, Tarpy explained, but usually with multiple partners, the drones of another bee colony. Richard, Tarpy, and Grozinger found that the number of partners appears to be a key factor in making the queen attractive to the worker bees of a colony – the more partners, the more attractive the queen is and the longer her reign is likely to be.

The scientists also conducted experiments that suggest that the number of times a queen mates is a factor in altering the composition of a pheromone, or chemical signal, the queen produces. It is the composition of this pheromone that appears to attract the worker bees of a hive.

... more about:
»Drone »Grozinger »Pheromone »Tarpy »colony »inseminated »mated »multiply »semen

A honey bee colony consists of a single queen and several thousand sterile worker bees. Throughout most of her life, the queen’s job is to lay eggs. However, early in a queen’s life, she makes several mating flights. On these flights, she mates -- in midair -- with anywhere from one to more than 40 drones. The average number of drones with which a queen mates is 12. The queen stores the semen from her mating flights for the remainder of her life, two to three years for a long-lived queen.

However, some queens are not so long-lived. They are rejected by the workers of the hive. The research of Richard, Tarpy, and Grozinger sheds light on this rejection mechanism.

Because queens mate early in their lives and store semen, it stands to reason that queens that have mated multiple times and accumulate more semen might be more valuable to a colony. But Tarpy said researchers have not studied the impact of the number of times a queen mates on her physiology until now.

To determine the effect mating has on honey bee queens, the scientists artificially inseminated queens. It’s difficult to determine the number of times a queen mates under natural conditions. Some queens were inseminated with the semen from one drone, others with the semen from 10 drones. The scientists then put the queens in hives and observed them.

They found that worker bees paid more attention to the multiply inseminated queens. Worker bees demonstrate what is known as a “retinue response” to their queen; they lick her and rub their antennae on her. The retinue response to the multiply inseminated queens was more pronounced.

“This tells us the workers can tell how many drones the queen has mated with,” said Grozinger.

Like many animals, honey bees use pheromones to communicate. When Richard analyzed pheromone produced in the mandibular gland of honey bee queens, she found that pheromone composition changes dramatically after queens mate and that the number of times the queen mates appears to be a key factor in determining the extent of pheromone alteration.

Richard added that when worker bees were exposed to pheromone from queens inseminated with semen from one drone and queens inseminated with semen from multiple drones, the workers showed a preference for the pheromone from the multiply inseminated queens.

Richard added that an analysis of the mandibular gland pheromone found differences in the chemical profile of pheromone from once-inseminated and multiply inseminated queens. The scientists also found differences in the two types of queens in brain-expression levels of a behaviorally relevant gene.

“Our results clearly demonstrate that insemination quantity alters queen physiology, queen pheromone profiles and queen-worker interactions,” the scientists write in the PLoS One paper.

Tarpy said the research could have implications for bee breeding and for beekeepers. The research suggests that queens that mate with multiple partners are superior, so breeders may want to select for this behavior.

At the same time, beekeepers usually buy mated queens when they re-queen their hives. Tarpy said it should be possible to devise a test to determine if a queen has mated few or many times. Such a test would help beekeepers determine the quality of the queens they buy.

Andrew Hyde | alfa
Further information:
http://www.plosone.org/doi/pone.0000980

Further reports about: Drone Grozinger Pheromone Tarpy colony inseminated mated multiply semen

More articles from Life Sciences:

nachricht Kidney tumor: Genetic trigger discovered
18.06.2018 | Julius-Maximilians-Universität Würzburg

nachricht New type of photosynthesis discovered
18.06.2018 | Imperial College London

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Novel method for investigating pore geometry in rocks

18.06.2018 | Earth Sciences

Diamond watch components

18.06.2018 | Process Engineering

New type of photosynthesis discovered

18.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>