Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In biology, polarization is a good thing

09.10.2007
Using a molecular cellular compass, individual cells in complex organisms know which way is up or down, in epithelial cells known as apical-basal polarity.

Determining the orientation is essential for an individual cell to perform it’s designated tasks. Now it appears that the same compass also defines the direction of cells when migrating by establishing a morphological back and a front. These are the conclusions of a recent study lead by scientists Michiel Pegtel and John Collard from the Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital (NKI-AVL) in the Netherlands published in the October 9th issue of the scientific journal Current Biology.

Many cell types acquire asymmetry for their biological function. Yeast cells, worms, mice and men all use the same cellular compass, made up of a combination of protein complexes that is essential for the spatial orientation of the cell. The Par-Tiam1 polarity complex is a crucial component of the compass. Tiam1 was earlier identified as a gene that could influence dissemination of tumour cells.

In a previous study by the group of John Collard from the NKI-AVL, it became clear that the Par-Tiam1 complex is crucial for top/bottom orientation of adherent cells. This form of cell asymmetry is required for the cells to properly adhere and to form a tightly connected cellular structure. However, loss of orientation or cell polarity leads dissociation of cell-cell contacts and in tumours to dissemination of cancer cells.

... more about:
»Collard »Par-Tiam1 »orientation »polarity

Now it appears that the Par-Tiam1 complex also controls front-rear orientation of the cell. This way cells that leave their brethrens behind after detaching know how to find their way while migrating. Collard and colleagues showed that mouse skin cells with a functional compass migrate in a straight linear fashion toward their target. The cells persistently move forward like a caterpillar, continuously expanding and retracting in one direction. But when the Par-Tiam1 complex is disrupted or shut-down, the cells migrate aimlessly in random direction.

Pegtel & Collard: “It is becoming clear that polarity of cells is crucial for embryonic development and function of many biological processes in humans and lower organisms alike. It guides immune cells to sites of infection and directs the organization of the neuronal network. But at the same time, it also prevents detachment of adherent cells; we were very surprised that one protein complex regulates such seemingly opposing tasks”. This could explain the findings that Tiam1 is able both to promote and prevent metastasis in different tumours.

Frederique Melman | alfa
Further information:
http://www.nki.nl
http://www.current-biology.com/content/article/abstract?uid=PIIS0960982207018520

Further reports about: Collard Par-Tiam1 orientation polarity

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>