Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Help for diabetics in checking blood sugar

08.10.2007
There is a need today to be able to measure various concentrations of blood sugar in fluid, especially in the foodstuffs industry and health care.

In his doctoral dissertation at Kalmar University in Sweden, Henrik Engström has designed biosensors for metering the concentration of, among other things, maltose in oat beverages. In the long run biosensors can be developed to monitor blood sugar in diabetics.

Biosensors can monitor rapid changes in concentrations of sugars if the interaction with the biological molecule in the sensor is fast enough. Henrik Engström studied interactions that, with the help of biosensors, are faster than what many other instruments normally measure, which opens the possibility of continuously monitoring changes in sugar concentration.

"By designing various biosensors, I have studied antibodies with the ability to interact and bind various types of sugar," says Henrik Engtröm. "I focused on developing biosensors that can register changes in the concentration of maltose. Maltose is used in the brewery business and other parts of the foodstuffs industry. It's the main sweetener in oat beverages."

Henrik Engström has done research on biosensors for determining the concentration of various types of sugar, using antibodies and fluorescence technology. These biosensors can continuously monitor changes in concentration because the antibodies interact with the sugars, thereby providing the biosensors with direct measurement data. Biosensors based on antibodies have the capacity today to be adapted for internal use, for example, placement under the skin, and together with fluorescence technology it is possible to read the measurement data from the sensor through the skin.

"Together with the industry we have evaluated a type of antibody that shows potential for future blood-sugar analyses in diabetics," says Henrik Engström. "Today there is a need among diabetics not to have to prick their fingers to check their blood sugar but rather to monitor the concentration with the aid of a sensor that does not require blood samples. Research in this field has the potential to considerably improve the situation, enhancing the quality of life for diabetics."

The dissertation is titled Development of Fluorescence-based Immunosensors for Continuous Carbohydrate Monitoring­Applications for Maltose and Glucose.

More information: Henrik Engström phone+46-480 44 62 61; cellphone:
+46-706 433004 e-mail: henrik.engstrom@hik.se
Pressofficer Karin Ekebjär emial: karin.ekebjar@hik.se;
cellphone +46-709 229435

Karin Ekebjär | idw
Further information:
http://www.vr.se

Further reports about: Antibodies Biosensors Engström blood concentration diabetics

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>