Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify key step bird flu virus takes to spread readily in humans

08.10.2007
Since it first appeared in Hong Kong in 1997, the H5N1 avian flu virus has been slowly evolving into a pathogen better equipped to infect humans. The final form of the virus, biomedical researchers fear, will be a highly pathogenic strain of influenza that spreads easily among humans.

Now, in a new study a team of researchers from the University of Wisconsin-Madison report the identification of a key step the virus must take to facilitate the easy transmission of the virus from person to person.

Writing today (Oct. 4, 2007) in the journal Public Library of Science Pathogens, a team of researchers led by virologist Yoshihiro Kawaoka of the UW-Madison School of Veterinary Medicine has identified a single change in a viral protein that facilitates the virus' ability to infect the cells of the upper respiratory system in mammals. By adapting to the upper respiratory system, the virus is capable of infecting a wider range of cell types and is more easily spread, potentially setting the stage for a flu pandemic.

"The viruses that are in circulation now are much more mammalian-like than the ones circulating in 1997," says Kawaoka, an internationally recognized authority on influenza. "The viruses that are circulating in Africa and Europe are the ones closest to becoming a human virus."

As its name implies, bird flu first arises in chickens and other birds. Humans and other animals in close contact with the birds may be infected, and the virus begins to adapt to new host animals, a process that may take years as small changes accumulate. Over time, an avian virus may gather enough genetic change to spread easily, as experts believe was the case with the 1918 Spanish flu, an event that killed at least 30 million people worldwide.

In the new study, which was conducted in mice, the Wisconsin team identified a single change in a viral surface protein that enabled the H5N1 virus to settle into the upper respiratory system, which "may provide a platform for the adaptation of avian H5N1 viruses to humans and for efficient person-to-person virus transmission."

Other currently undetermined changes are required for the virus to become a human pathogen of pandemic proportions, Kawaoka explains, but establishing itself in the upper respiratory system is necessary as that enables easy transmission of the virus through coughing and sneezing.

To date, more than 250 H5N1 human infections worldwide have been reported. Of those, more than 150 have been fatal, but so far efficient human-to-human transmission has not occurred. Most infections have occurred as a result of humans being in close contact with birds such as chickens that have the virus.

According to Kawaoka, the avian virus can be at home in the lungs of humans and other mammals as the cells of the lower respiratory system have receptors that enable the virus to establish itself. Temperatures in the lungs are also higher and thus more amenable to the efficient growth of the virus.

The new study involved two different viruses isolated from a single patient -- one from the lungs, the other from the upper respiratory system. The virus from the upper respiratory system exhibited a single amino acid change in one of the key proteins for amplification of influenza virus genes.

The single change identified by the Wisconsin study, says Kawaoka, promotes better virus replication at lower temperatures, such as those found in the upper respiratory system, and in a wider range of cell types.

"This change is needed, but not sufficient," Kawaoka explains. "There are other viral factors needed to cause a viral pandemic" strain of bird flu.

However, Kawaoka and other flu researchers are convinced it is only a matter of time, as more humans and other animals are exposed to the virus, before H5N1 virus takes those steps and evolves into a virus capable of causing a pandemic.

Yoshihiro Kawaoka | EurekAlert!
Further information:
http://www.vetmed.wisc.edu

Further reports about: H5N1 Kawaoka Respiratory Transmission Viral avian respiratory system spread

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>