Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify key step bird flu virus takes to spread readily in humans

08.10.2007
Since it first appeared in Hong Kong in 1997, the H5N1 avian flu virus has been slowly evolving into a pathogen better equipped to infect humans. The final form of the virus, biomedical researchers fear, will be a highly pathogenic strain of influenza that spreads easily among humans.

Now, in a new study a team of researchers from the University of Wisconsin-Madison report the identification of a key step the virus must take to facilitate the easy transmission of the virus from person to person.

Writing today (Oct. 4, 2007) in the journal Public Library of Science Pathogens, a team of researchers led by virologist Yoshihiro Kawaoka of the UW-Madison School of Veterinary Medicine has identified a single change in a viral protein that facilitates the virus' ability to infect the cells of the upper respiratory system in mammals. By adapting to the upper respiratory system, the virus is capable of infecting a wider range of cell types and is more easily spread, potentially setting the stage for a flu pandemic.

"The viruses that are in circulation now are much more mammalian-like than the ones circulating in 1997," says Kawaoka, an internationally recognized authority on influenza. "The viruses that are circulating in Africa and Europe are the ones closest to becoming a human virus."

As its name implies, bird flu first arises in chickens and other birds. Humans and other animals in close contact with the birds may be infected, and the virus begins to adapt to new host animals, a process that may take years as small changes accumulate. Over time, an avian virus may gather enough genetic change to spread easily, as experts believe was the case with the 1918 Spanish flu, an event that killed at least 30 million people worldwide.

In the new study, which was conducted in mice, the Wisconsin team identified a single change in a viral surface protein that enabled the H5N1 virus to settle into the upper respiratory system, which "may provide a platform for the adaptation of avian H5N1 viruses to humans and for efficient person-to-person virus transmission."

Other currently undetermined changes are required for the virus to become a human pathogen of pandemic proportions, Kawaoka explains, but establishing itself in the upper respiratory system is necessary as that enables easy transmission of the virus through coughing and sneezing.

To date, more than 250 H5N1 human infections worldwide have been reported. Of those, more than 150 have been fatal, but so far efficient human-to-human transmission has not occurred. Most infections have occurred as a result of humans being in close contact with birds such as chickens that have the virus.

According to Kawaoka, the avian virus can be at home in the lungs of humans and other mammals as the cells of the lower respiratory system have receptors that enable the virus to establish itself. Temperatures in the lungs are also higher and thus more amenable to the efficient growth of the virus.

The new study involved two different viruses isolated from a single patient -- one from the lungs, the other from the upper respiratory system. The virus from the upper respiratory system exhibited a single amino acid change in one of the key proteins for amplification of influenza virus genes.

The single change identified by the Wisconsin study, says Kawaoka, promotes better virus replication at lower temperatures, such as those found in the upper respiratory system, and in a wider range of cell types.

"This change is needed, but not sufficient," Kawaoka explains. "There are other viral factors needed to cause a viral pandemic" strain of bird flu.

However, Kawaoka and other flu researchers are convinced it is only a matter of time, as more humans and other animals are exposed to the virus, before H5N1 virus takes those steps and evolves into a virus capable of causing a pandemic.

Yoshihiro Kawaoka | EurekAlert!
Further information:
http://www.vetmed.wisc.edu

Further reports about: H5N1 Kawaoka Respiratory Transmission Viral avian respiratory system spread

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
21.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
21.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>