Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genes from the father facilitate the formation of new species

08.10.2007
The two closely related bird species, the collared flycatcher and the pied flycatcher, can reproduce with each other, but the females are more strongly attracted to a male of their own species.

This has been shown by an international research team directed by Anna Qvarnström at Uppsala University in today’s Net edition of Science. They demonstrate that the gene for this sexual preference is found on the sex chromosome that is inherited from the father and that only females have a copy of. The discovery sheds new light on how new species are formed.

The formation of new species takes millions of years. It often happens when a population (group of individuals) is divided and separated geographically and then adapts to disparate environments over thousands of generations. For instance, the earth’s ice ages have led to many such population splits. But divided populations often come into contact with each other before they have had time to become entirely sexually isolated from each other. When individuals mate with each other from such split populations that have not quite become separate species, their offspring (so-called hybrids) often have limited viability.

Anna Qvarnström’s research team from Uppsala University in Sweden, working with scientists from Norway, the Czech Republic, the US, and Holland, have studied natural hybridization between two closely related bird species, the collared flycatcher and the pied flycatcher. The two flycatcher species (or “quasi species”) have come into contact with each other after having been separated during the last ice age. The question they addressed was whether the flycatchers will conclude the species formation that is under way and become entirely sexually isolated from each other or, instead, if they will meld into the same species again.

... more about:
»Chromosome »Population »Sex »flycatcher »formation

“We found that females in the hybrid zone develop a sexual preference for males belonging to their own species and that this preference is determined by genes located on the sex chromosome,” says Anna Qvarnström.

In birds, in contrast with most other animals, it is the females that are the so-called heterogametic sex. Their sex chromosomes are called ZW and correspond to XY in humans. In birds, it is the female that is ZW and the male ZZ, but in humans men are XY and women XX. The results show that the preference for their own species is sited on the sex chromosome that the females inherit from their father. The same chromosome also houses the genes that govern the development of the species-specific plumage.

“When genes regulate species-specific features and the preference for these are located close to each other in the DNA, in this case on the same chromosome, species formation is favored. Therefore, the probability of these two flycatcher species merging into the same species again is small,” says Anna Qvarnström.

It is possible that this will prove to be a general pattern that can explain how new species can continue to exist even if they occasionally hybridize with each other.

Anna Qvarnström | alfa
Further information:
http://www.sciencemag.org
http://www.uu.se

Further reports about: Chromosome Population Sex flycatcher formation

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>