Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genes from the father facilitate the formation of new species

08.10.2007
The two closely related bird species, the collared flycatcher and the pied flycatcher, can reproduce with each other, but the females are more strongly attracted to a male of their own species.

This has been shown by an international research team directed by Anna Qvarnström at Uppsala University in today’s Net edition of Science. They demonstrate that the gene for this sexual preference is found on the sex chromosome that is inherited from the father and that only females have a copy of. The discovery sheds new light on how new species are formed.

The formation of new species takes millions of years. It often happens when a population (group of individuals) is divided and separated geographically and then adapts to disparate environments over thousands of generations. For instance, the earth’s ice ages have led to many such population splits. But divided populations often come into contact with each other before they have had time to become entirely sexually isolated from each other. When individuals mate with each other from such split populations that have not quite become separate species, their offspring (so-called hybrids) often have limited viability.

Anna Qvarnström’s research team from Uppsala University in Sweden, working with scientists from Norway, the Czech Republic, the US, and Holland, have studied natural hybridization between two closely related bird species, the collared flycatcher and the pied flycatcher. The two flycatcher species (or “quasi species”) have come into contact with each other after having been separated during the last ice age. The question they addressed was whether the flycatchers will conclude the species formation that is under way and become entirely sexually isolated from each other or, instead, if they will meld into the same species again.

... more about:
»Chromosome »Population »Sex »flycatcher »formation

“We found that females in the hybrid zone develop a sexual preference for males belonging to their own species and that this preference is determined by genes located on the sex chromosome,” says Anna Qvarnström.

In birds, in contrast with most other animals, it is the females that are the so-called heterogametic sex. Their sex chromosomes are called ZW and correspond to XY in humans. In birds, it is the female that is ZW and the male ZZ, but in humans men are XY and women XX. The results show that the preference for their own species is sited on the sex chromosome that the females inherit from their father. The same chromosome also houses the genes that govern the development of the species-specific plumage.

“When genes regulate species-specific features and the preference for these are located close to each other in the DNA, in this case on the same chromosome, species formation is favored. Therefore, the probability of these two flycatcher species merging into the same species again is small,” says Anna Qvarnström.

It is possible that this will prove to be a general pattern that can explain how new species can continue to exist even if they occasionally hybridize with each other.

Anna Qvarnström | alfa
Further information:
http://www.sciencemag.org
http://www.uu.se

Further reports about: Chromosome Population Sex flycatcher formation

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>