Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Cilia: small organelles, big decisions

Johns Hopkins researchers say they have figured out how human and all animal cells tune in to a key signal, one that literally transmits the instructions that shape their final bodies. It turns out the cells assemble their own little radio antenna on their surfaces to help them relay the proper signal to the developmental proteins “listening” on the inside of the cell.

The transmitters are primary cilia, relatively rigid, hairlike “tails” that respond to specialized signals from a host of proteins, including a key family of proteins known as Wnts. The Wnts in turn trigger a cascade of shape-making decisions that guide cells to take specific shapes, like curved eyelid cells or vibrating hair cells in the ear, and even make sure that arms and legs emerge at the right spots.

“Our experiments go to the heart of the development and maintenance of our body tissue,” says Johns Hopkins geneticist Nicholas Katsanis, Ph.D., associate professor at the McKusick-Nathans Institute for Genetic Medicine. “Any miscues with the Wnt signaling pathway,” says Katsanis, “and you’re looking at major childhood diseases and defects.”

In a report published on September 30 in Nature Genetics, Katsanis and his team used a small transparent fish, zebrafish, to literally watch what happened if they chemically blocked the production of three proteins that are required for primary cilia function during the period when a fish egg develops into a grown up, fully-finned fish.

... more about:
»Katsanis »Wnt »cilia »proteins

The more they blocked, the more developmental errors - for example, the growing fish would not properly extend their tails - they were able to track to defective Wnt signaling.

Katsanis notes that once inside a cell, the Wnt pathway splits into two branches that need to be balanced depending on the needs of each cell: the so-called canonical branch, which typically drives cells to multiply, and the non-canonical branch, which controls messages to refine cell shape and growth. The errors seen in the fish pointed to an imbalance where canonical signaling predominated.

A series of biochemical studies revealed that cilia normally help a cell keep the right balance by selectively destroying proteins in the canonical branch to prevent excess growth. Defective ciliary function therefore leads to defective destruction of key proteins, which then causes problems in interpreting the Wnt signal.

“We thought that the key to the balancing act occurred inside the cell, but it now seems clear that the cilia are the main relay stations,” Katsanis says. “We’ve just reset a huge volume of literature under a new light.”

Nick Zagorski | EurekAlert!
Further information:

Further reports about: Katsanis Wnt cilia proteins

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>