Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery offers hope of halting Motor Neurone Disease progression

05.10.2007
Scientists have discovered a causal link between the gene for a small protein involved in the formation of blood vessels and the development of some forms of Motor Neurone Disease.

Published in the journal Human Molecular Genetics, the findings could provide a basis for developing methods for halting the progression of some forms of the disease.

Their work builds on the discovery in 2006 by a research group from Ireland that some patients have a mutated form of the gene which produces angiogenin - a protein involved in blood vessel formation.

In a series of recent papers, including the latest one in HMG, Dr Vasanta Subramanian and colleagues from the University of Bath have shown that as well as playing a key role in the formation of blood vessels, angiogenin is also involved in maintaining motor neurones.

The researchers have also discovered that the mutant versions of the molecule are toxic to motor neurones and affect their ability to grow and extend.

The scientists behind the new research believe that the gradual build up of these faulty molecules may explain the late onset and gradual deterioration of function caused by the disease.

By targeting the altered form of angiogenin, it may be possible to better maintain the neurones of people with the disease, in order to prevent them from degenerating and halt progression of the disease.

Motor Neurone Disease, which is also known as Amyotrophoic Lateral Sclerosis (ALS) affects between one-five of every 100,000 people, and around 5,000 people at any one time in the UK.

Some ALS patients of Scottish and Irish descent as well some ALS patients in the USA have the mutated gene which produces faulty angiogenin.

“We know most about angiogenin from its role in helping blood vessels branch into the tree-like structures as they grow, particularly in tumour growth,” said Dr Vasanta Subramanian from the University of Bath’s Department of Biology & Biochemistry.

“Last year’s discovery that some patients with both familial and sporadic Motor Neurone Disease have a mutated version of the human angiogenin gene was surprising because we didn’t know how angiogenin could be connected with the disease.

“Since then we have been busy trying to find out, and now we have shown that angiogenin also plays a key role in the maintenance and development of motor neurones.

“We have also found that mutated versions of this molecule are toxic to motor neurones and affect their ability to put out extensions called the axons.

“This clearer picture of how the altered angiogenin works at the cellular and molecular level enables us to think about ways of preventing the disease from progressing.

“The symptoms of Motor Neurone Disease begin to appear as the neurones which control movement begin to degenerate.

“If we can block the function of the faulty angiogenin in patients in which it is present this may help to maintain healthy neurones and prevent further progression of the disease.”

Funded by the Wellcome Trust and the Medical Research Council, the researchers looked for where angiogenin is produced (expressed) in developing mouse embryos. They found that it was widely expressed in the nervous system both in the brain and in the spinal cord, mostly in the neurones.

As the mouse embryo developed, the amount of angiogenin gradually reduced but was still expressed in the brain and spinal cord of adult mice.

They then used a molecule to inhibit the activity of the angiogenin gene in neurones and discovered that the absence of angiogenin affected the neurone’s ability to extend nerve projections; a process known as neurite pathfinding.

They then examined the effect of a mutated angiogenin on motor neurones and found that the molecule effects motor neurone pathfinding. They also discovered that the mutated angiogenin is toxic to motor neurones when the nerve cells are subjected to oxidative stress.

This suggests that angiogenin acts as a neurotrophic and neuroprotective factor that helps neurones to survive.

“There is still much to be done in order to better understand the precise nature of the disease mechanism and the role played by the altered forms of Angiogenin,” said Dr Subramanian.

“When we figure out exactly what goes wrong, we can start to develop ways of preventing progression of this neurodegenerative disease.”

In ALS, the neurones responsible for transmitting the chemical messages that enable muscle movements become affected and subsequently die, causing muscle weakness and wasting leading to death by asphyxiation.

Famous people who have succumbed to the disease include actor David Niven, footballers Don Revie and Willie Maddren, and baseball player Lou Gehrig. Professor Stephen Hawking is exceptional; he has survived with the disease for more than 35 years.

Andrew McLaughlin | alfa
Further information:
http://www.bath.ac.uk/news/2007/10/5/angiogenin.html
http://www.wellcome.ac.uk
http://www.mrc.ac.uk

Further reports about: Angiogenin Neurone blood vessel mutated progression vessel

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>