Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New system to lead to safer drugs for tropical disease Leishmaniasis

04.10.2007
The fight against the deadly tropical disease Leishmaniasis, also known as black fever, has been boosted by scientists at the University of Durham, whose new screening system has raised the possibility of new, safer drugs. The work is highlighted in the quarterly magazine of the Biotechnology and Biological Sciences Research Council (BBSRC) this week.

Leishmaniasis is a parasitic disease found largely in the tropics which the World Health Organisation has estimated infects 12 million people worldwide each year. In the tropical regions Leishmaniasis is transmitted by sandflies but more recently cases have been reported in Europe among intravenous drug users with HIV. The parasite is a protozoan, a single-celled microbe, which causes symptoms ranging from skin sores to a swollen spleen or liver. If not treated, the more damaging forms of the disease can lead to death.

Many drugs against these types of parasites have toxic side effects, and can result in the death of one in ten patients. Development of safe treatments has been hampered up by the similarity between the biochemical processes of the pathogen and its human host.

However, researchers at Durham University have now developed a screening system to provide new insight into the biochemical processes at play. As a result they have identified and characterised a key enzyme which helps produce an essential cell component of protozoa called a 'complex sphingolipid', plus an inhibitor which specifically acts against this enzyme. The team have recently filed a patent for the system, which could be used in the search for non-toxic anti-protozoan drugs.

... more about:
»Disease »Leishmaniasis »enzyme »protozoa »tropical

Dr Paul Denny, research leader, explains: "Identifying both the enzyme responsible for the complex sphingolipid component of protozoa plus the inhibitor which acts against this enzyme is very significant. It has marked implications in the search for anti-protozoan drugs with reduced side-effects, as knowing how to block this enzyme could prevent the production of the complex sphingolipid and thus prevent the protozoa from establishing infection.

"Potentially we can rapidly screen thousands of compounds for inhibitory effects against this enzyme. It provides a much quicker means of identifying inhibitors with the potential for drug development than is standardly used.

"Our next step is to understand the structure and mechanism of this enzyme to help inform rational drug design."

The research is supported by BBSRC. Prof Nigel Brown, BBSRC Director of Science and Technology commented: "Leishmaniasis is an extremely damaging disease which threatens 350 million people in 88 countries around the world. This research demonstrates how important fundamental bioscience research is to developing life-saving pharmaceuticals, and should provide hope to people in affected regions."

Michelle Kilfoyle | alfa
Further information:
http://www.bbsrc.ac.uk

Further reports about: Disease Leishmaniasis enzyme protozoa tropical

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>