Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New system to lead to safer drugs for tropical disease Leishmaniasis

04.10.2007
The fight against the deadly tropical disease Leishmaniasis, also known as black fever, has been boosted by scientists at the University of Durham, whose new screening system has raised the possibility of new, safer drugs. The work is highlighted in the quarterly magazine of the Biotechnology and Biological Sciences Research Council (BBSRC) this week.

Leishmaniasis is a parasitic disease found largely in the tropics which the World Health Organisation has estimated infects 12 million people worldwide each year. In the tropical regions Leishmaniasis is transmitted by sandflies but more recently cases have been reported in Europe among intravenous drug users with HIV. The parasite is a protozoan, a single-celled microbe, which causes symptoms ranging from skin sores to a swollen spleen or liver. If not treated, the more damaging forms of the disease can lead to death.

Many drugs against these types of parasites have toxic side effects, and can result in the death of one in ten patients. Development of safe treatments has been hampered up by the similarity between the biochemical processes of the pathogen and its human host.

However, researchers at Durham University have now developed a screening system to provide new insight into the biochemical processes at play. As a result they have identified and characterised a key enzyme which helps produce an essential cell component of protozoa called a 'complex sphingolipid', plus an inhibitor which specifically acts against this enzyme. The team have recently filed a patent for the system, which could be used in the search for non-toxic anti-protozoan drugs.

... more about:
»Disease »Leishmaniasis »enzyme »protozoa »tropical

Dr Paul Denny, research leader, explains: "Identifying both the enzyme responsible for the complex sphingolipid component of protozoa plus the inhibitor which acts against this enzyme is very significant. It has marked implications in the search for anti-protozoan drugs with reduced side-effects, as knowing how to block this enzyme could prevent the production of the complex sphingolipid and thus prevent the protozoa from establishing infection.

"Potentially we can rapidly screen thousands of compounds for inhibitory effects against this enzyme. It provides a much quicker means of identifying inhibitors with the potential for drug development than is standardly used.

"Our next step is to understand the structure and mechanism of this enzyme to help inform rational drug design."

The research is supported by BBSRC. Prof Nigel Brown, BBSRC Director of Science and Technology commented: "Leishmaniasis is an extremely damaging disease which threatens 350 million people in 88 countries around the world. This research demonstrates how important fundamental bioscience research is to developing life-saving pharmaceuticals, and should provide hope to people in affected regions."

Michelle Kilfoyle | alfa
Further information:
http://www.bbsrc.ac.uk

Further reports about: Disease Leishmaniasis enzyme protozoa tropical

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>