Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Explaining Tsavo’s Maneless Man-Eaters

12.04.2002


The phrase "king of the jungle" invariably conjures up the image of a majestic, tawny cat with a fluffy mane framing its face. But in fact not all male lions have big hair. In Kenya’s Tsavo National Park--famed for the man-eating lions that reportedly terrorized railroad workers there in the late 1800s--a number of males lack manes altogether. Exactly why this should be the case--or why any lions should have manes, for that matter--has been difficult to explain. To that end, the results of a new study, published online today by the Canadian Journal of Zoology, could prove insightful.


Image: John Weinstein/Courtesy of the Field Museum



Over the years, researchers have put forth several social hypotheses aimed at explaining the main function of the mane in these group-living felines, ranging from intimidation (a big mane makes an animal look bigger) to physical protection for the head and neck areas from other lions to sex appeal. At the same time, however, manes are expensive: they offer unnecessary and perhaps harmful insulation to beasts in hot areas, they make the animals more conspicuous to both prey and competitors, and all that extra hair provides more stuff for thorns and brambles to latch onto.

To shed some light on the matter, Roland Kays of the New York State Museum in Albany and Bruce Patterson of the Field Museum in Chicago set out to test one of the social hypotheses: that mane size should vary as a function of female group size. According to this model, increased female group size should ratchet up the sexual selection pressure for long, flowing manes on males. Males with reduced or nonexistant manes, in contrast, should predominate in areas characterized by smaller female groups.


Observations of the Tsavo lions did not bear these predictions out. The researchers found that average female group size was large for the species. Yet most males were maneless or retained only remnant tufts on their head or neck. The more likely explanation for Tsavo’s maneless males, Kays and Patterson conclude, is that the blisteringly hot, arid, thornbrush-covered Tsavo habitat makes mane maintenance too costly.

The researchers further note that in contrast to savannah-dwelling populations, the prides observed in Tsavo consisted of a lone male defending a group of females. "How single, maneless males are able to hold relatively large groups of females remains unknown," they write. But it may be that these males have higher testosterone levels, which could account for both their "baldness" and their ability to single-handedly fend off groups of challengers.

Kate Wong | Scientific American

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>