Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research offers insights into how genetics are a prime factor in how we learn

02.10.2007
UA psychologist finds genetic links to learning behavior

Michael Frank, an assistant professor of psychology and director of the Laboratory for Neural Computation and Cognition at The University of Arizona, headed a team whose results are reported in the Oct. 1 issue of Early Edition, an online site hosted by the Proceedings of the National Academy of Sciences.

Frank and his colleagues found links to learning behaviors in three separate genes associated with dopamine. Dopamine is a neurotransmitter, a chemical in the brain that is often associated with pleasure, learning and other behaviors. Several neurological disorders, such as Parkinson's disease, are also linked to abnormal levels of dopamine.

Frank's study points to fundamental genetic differences between "positive" and "negative" learners.

... more about:
»Insights »choice »dopamine »individual »outcome

"All three genes affect brain dopamine functioning, but in different ways, and in different parts of the brain" Frank said. "The genes predicted people's ability to learn from both the positive and negative outcomes of their decisions."

Two of the genes - DARPP-32 and DRD2 - predicted learning about the average, long-term probability of rewards and punishments, not unlike your personal preference for why, for example, you might choose steak over salmon.

"When making these kinds of choices, you do not explicitly recall each individual positive and negative outcome of all of your previous such choices. Instead, you often go with your "gut," which may involve a more implicit representation of the probability of rewarding outcomes based on past experience," Frank said.

The DARPP-32 and DRD2 genes control dopamine function in a region of the brain called the striatum, thought to be necessary for this kind of implicit reward learning. A third gene, COMT, did not predict long-term reward or punishment learning, but instead predicted a person's tendencies to change choice strategies after a single instance of negative feedback. Frank said this gene affects dopamine function in the prefrontal cortex of the brain, the area associated with conscious processing and working memory. This would be akin to switching from steak to salmon upon remembering your last experience with overdone steak.

The overall research program was designed to test a computer model that simulates the key roles of dopamine in reinforcement learning in different parts of the brain, as motivated by a body of biological research.

"The reason we looked at these three individual genes in the first place, out of a huge number of possible genes, is that we have a computer model that examines how dopamine mediates these kinds of reinforcement processes in the striatum and prefrontal cortex," Frank said. "The model makes specific predictions on how subtle changes in different aspects of dopamine function can affect behavior, and one way to get at this question is to test individual genes."

Among the evidence incorporated in the model and motivating the genetic study is research showing that bursts of dopamine production follow in the wake of unexpected rewards. Conversely, dopamine production declines when rewards are expected but not received.

To test their hypothesis, the researchers collected DNA from 69 healthy individuals who were asked to perform a computerized learning program. The volunteers were asked to pick one of two Japanese characters that appeared on a screen and were "rewarded" for a "correct" response, and "punished" for an "incorrect" one.

Frank said more research is needed to confirm that genetic effects are accompanied by brain-related changes in behavior. But, he said, the research offers insights into the genetic basis for learning differences and insights into improving human cognition and learning, both normal and abnormal.

"Understanding how dopaminergic variations affects learning and decision-making processes may have substantial implications for patient populations, such as (those with) Parkinson's disease, attention-deficit hyperactivity disorder (ADHD) and schizophrenia," Frank said. "The genetics might also help us identify individuals who might gain from different types of learning environments in the classroom."

Michael Frank's home page: http://www.u.arizona.edu/~mfrank/

Contact: 520-626-4787, mfrank@u.arizona.edu

Jeff Harrison | University of Arizona
Further information:
http://www.u.arizona.edu/~mfrank/
http://www.arizona.edu

Further reports about: Insights choice dopamine individual outcome

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>