Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research shows how H5N1 virus causes disease

01.10.2007
Avian influenza H5N1 virus affects much more than respiratory system: disseminates to gastrointestinal tract, immune and central nervous systems, and can be transmitted mother to fetus through placenta

H5N1 influenza, also known as avian influenza, is considered a major global threat to human health, with high fatality rates. While little had been known about the specific effects of H5N1 on organs and cells targeted by the virus, researchers at Beijing University, Columbia University Mailman School of Public Health, and SUNY Downstate report in the September 29, 2007 issue of the Lancet detailed studies of human H5N1 victims that shed light on the anatomic distribution of the virus and its pathogenesis.

Using a combination of molecular and protein labeling techniques, the authors found that H5N1 is present in the gastrointestinal tract and immune and central nervous systems, as well as the respiratory tract. In one patient, virus was transmitted across the placenta to the fetus.

The newly obtained data are important in the clinical, pathological, and epidemiological investigations of human H5N1 infection, and have widespread implications for public-health and healthcare providers. Although there has been considerable progress in studying the virus itself, and in developing surveillance networks, diagnostic tests, drugs and vaccines, only limited information has been obtained concerning the mechanisms by which H5N1 causes disease.

... more about:
»Disease »H5N1 »Virus

H5N1 infections initially seemed to be restricted to the lungs, but later reports have suggested that influenza A H5N1 could disseminate beyond the lungs. Lung damage is severe and disproportionate to the number of cells that are infected, with macrophages and T-cells targeted for infection. These latest findings indicate that lung damage is not due to virus replication alone and support the hypothesis that indirect effects, such as soluble factors known as cytokine and chemokines, are important.

According to the paper’s senior author W. Ian Lipkin, MD, director of the Center for Infection and Immunity at Columbia University Mailman School of Public Health and professor of Epidemiology, Neurology, and Pathology at Columbia, “This is the first major paper from the Beijing Infectious Disease Center, established in the aftermath of SARS by Beijing University, the Chinese Ministry of Science and Technology (the CDC of China), and the Mailman School of Public Health. The work helps us to understand H5N1’s high fatality rate, as well as serving as model for global collaboration in the field of emerging infectious diseases.”

Randee Sacks Levine | EurekAlert!
Further information:
http://www.mailman.hs.columbia.edu

Further reports about: Disease H5N1 Virus

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>