Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New field-deployable biosensor detects avian influenza virus in minutes instead of days

01.10.2007
Quick identification of avian influenza infection in poultry is critical to controlling outbreaks, but current detection methods can require several days to produce results.

A new biosensor developed at the Georgia Tech Research Institute (GTRI) can detect avian influenza in just minutes. In addition to being a rapid test, the biosensor is economical, field-deployable, sensitive to different viral strains and requires no labels or reagents.

“We can do real-time monitoring of avian influenza infections on the farm, in live-bird markets or in poultry processing facilities,” said Jie Xu, a research scientist in GTRI’s Electro-Optical Systems Laboratory (EOSL).

Worldwide, there are many strains of avian influenza virus that cause varying degrees of clinical symptoms and illness. In the United States, outbreaks of the disease – primarily spread by migratory aquatic birds – have plagued the poultry industry for decades with millions of dollars in losses. The only way to stop the spread of the disease is to destroy all poultry that may have been exposed to the virus.

A virulent strain of avian influenza (H5N1) has begun to threaten not only birds but humans, with more than 300 infections and 200 deaths reported to the World Health Organization since 2003. Looming is the threat of a pandemic, such as the 1918 Spanish flu that killed about 40 million people, health officials say.

“With so many different virus subtypes, our biosensor’s ability to detect multiple strains of avian influenza at the same time is critical,” noted Xu.

To test the biosensor, the researchers assessed its ability to detect two avian influenza strains that previously infected poultry. The results showed that a solution containing very few virus particles could be detected by the sensor.

Xu tested a third strain of the virus as a control. When the sensor coating was modified to collect only the other two strains, the control strain was not detected even at high concentrations. Results of this study were published online in August in the journal Analytical and Bioanalytical Chemistry and will be included in journal’s print edition on October 16. The work was funded by the U.S. Department of Agriculture’s (USDA) Agricultural Research Service (ARS) and the Georgia Research Alliance.

“The technology that Georgia Tech developed with our help has many advantages over commercially available tests -- improved sensitivity, rapid testing and the ability to identify different strains of the influenza virus simultaneously,” said David Suarez, a collaborator on the project and research leader of exotic and emerging avian viral diseases in ARS’ Southeast Poultry Research Laboratory in Athens, Ga. Suarez is providing antibodies and test samples for GTRI’s research.

The biosensor is coated with antibodies specifically designed to capture a protein located on the surface of the viral particle. For this study, the researchers evaluated the sensitivity of three unique antibodies to detect avian influenza virus.

The sensor utilizes the interference of light waves, a concept called interferometry, to precisely determine how many virus particles attach to the sensor’s surface. More specifically, light from a laser diode is coupled into an optical waveguide through a grating and travels under one sensing channel and one reference channel.

Researchers coat the sensing channel with the specific antibodies and coat the reference channel with non-specific antibodies. Having the reference channel minimizes the impact of non-specific interactions, as well as changes in temperature, pH and mechanical motion. Non-specific binding should occur equally to both the test and reference channels and thus not affect the test results.

An electromagnetic field associated with the light beams extends above the waveguides and is very sensitive to the changes caused by antibody-antigen interactions on the waveguide surface. When a liquid sample passes over the waveguides, any binding that occurs on the top of a waveguide because of viral particle attachment causes water molecules to be displaced. This causes a change in the velocity of the light traveling through the waveguide.

At the end of the waveguide, the light beams from the sensing and reference channels are combined to create an interference pattern. The pattern of alternating dark and light vertical stripes, or fringes, is imaged on a simple detector. By doing a mathematical Fourier transform, the researchers determine the degree to which the fringe patterns are in or out of step with each other, known as phase shift. This phase shift tells the amount of virus bound to the surface.

“The fringe pattern doesn’t look like it changes in the image, but with math we find out the speed of the light in the test channel changed creating this phase change,” explained Xu.

Current methods of identifying infected birds include virus isolation, real-time reverse transcriptase polymerase chain reaction (RRT-PCR) and antigen capture immunoassays. Virus isolation is a sensitive technique, but typically requires five to seven days for testing. RRT-PCR is commonly available in veterinary diagnostic laboratories, but requires expensive equipment and appropriate laboratory facilities. RT-PCR can take as little as three hours to get test results, but routine surveillance samples are more often processed in 24 hours. The antigen capture immunoassays can provide rapid test results, but suffer from low sensitivity and high cost.

Beyond the waveguide sensor, the only additional external components required for field-testing with GTRI’s biosensor include a sample-delivery device (peristaltic pump), a data collection laptop computer and a swab taken from a potentially infected bird. Power is supplied by a nine volt battery and USB connection. The waveguides can be cleaned and reused dozens of times, decreasing the per-test cost of the chip fabrication.

Xu and Suarez are currently working together to test new unique antibodies with the biosensor and to test different strains. In addition, Xu is reducing the size of the prototype device to be about the size of a lunchbox and making the computer analysis software more user-friendly so that it can be field-tested in two years.

“We are continuing our collaboration and have provided additional money to Georgia Tech to move the project along faster,” added Suarez. “Since this technology is already set up so that you can use multiple antibodies to detect different influenza subtypes, we are going to extend the work to include the H5 subtype.”

Abby Vogel | EurekAlert!
Further information:
http://www.gatech.edu

Further reports about: Antibodies Biosensor Infection Particle Suarez Viral avian subtype waveguide

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>