Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Interacting protein theory awaits test from new neutron analysis tools

01.10.2007
An international collaboration directed by an Oak Ridge National Laboratory researcher has performed the first-ever atomic-detail computer simulation of how proteins vibrate in a crystal.

Jeremy Smith, who leads ORNL's Center for Molecular Biophysics, said experimental testing of the theoretical work will require the capabilities of the Office of Science's recently completed Spallation Neutron Source at ORNL.

The study is a collaboration between Smith, who also holds a University of Tennessee-ORNL Governor's Chair, and researchers from the California Institute of Technology and the National Institute of Chemistry, Ljubljana, Slovenia. The work is published in the current issue of Physical Review Letters.

Understanding how proteins--life's worker molecules--interact with each other is a major goal of biological sciences. The simulation, which was made possible by recent advances in scientific computing, describes the forces and vibrations involved in protein crystals, which provide an environment in which the proteins are ordered and thus lend themselves to detailed study.

... more about:
»Neutron »SNS »Simulation »lattice

According to Smith, lattice dynamics describe how the repeating units of a crystal vibrate relative to each other. The resulting "phonon dispersion relations" relate the frequencies to the wavelengths of the oscillations.

Phonon dispersion relations provide information on how proteins interact with each other that could be useful for understanding protein-protein interactions in the living cell. Until now, researchers have lacked the computing power to allow atomic-detail lattice dynamical calculations.

Smith said the PRL paper predicts the existence and forms of the protein crystal lattice modes.

"In doing so it throws out a challenge to next-generation neutron science to finally make the breakthrough and determine the forms and frequencies of the vibrations experimentally," he said.

In other words, having overcome their computational hurdle, the lattice dynamics team is now ready for the SNS to test the simulation work and see if what is predicted is really there.

"Atomic-detail crystal dynamics calculations have not been possible before, and now we also have an experimental tool--the SNS--that will have the capability to test our simulations. We are looking forward to seeing the next generation of instruments at SNS demonstrate their talents." Smith said, humbly adding, "Hopefully, the calculations won't be too painfully off the mark."

Smith believes the SNS and its arsenal of specialized analytical instruments will be able to confirm--or contradict--what the simulations indicate.

"We appreciate that examining complicated proteins in this way will not be easy, even for SNS. However, with SNS instruments expected to be in some cases hundreds of times improved over currently existing facilities, we are confident that the neutron breakthrough is within reach," Smith said.

ORNL is managed by UT-Battelle for the Department of Energy.

Bill Cabage | EurekAlert!
Further information:
http://www.ornl.gov

Further reports about: Neutron SNS Simulation lattice

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>