Interacting protein theory awaits test from new neutron analysis tools

Jeremy Smith, who leads ORNL's Center for Molecular Biophysics, said experimental testing of the theoretical work will require the capabilities of the Office of Science's recently completed Spallation Neutron Source at ORNL.

The study is a collaboration between Smith, who also holds a University of Tennessee-ORNL Governor's Chair, and researchers from the California Institute of Technology and the National Institute of Chemistry, Ljubljana, Slovenia. The work is published in the current issue of Physical Review Letters.

Understanding how proteins–life's worker molecules–interact with each other is a major goal of biological sciences. The simulation, which was made possible by recent advances in scientific computing, describes the forces and vibrations involved in protein crystals, which provide an environment in which the proteins are ordered and thus lend themselves to detailed study.

According to Smith, lattice dynamics describe how the repeating units of a crystal vibrate relative to each other. The resulting “phonon dispersion relations” relate the frequencies to the wavelengths of the oscillations.

Phonon dispersion relations provide information on how proteins interact with each other that could be useful for understanding protein-protein interactions in the living cell. Until now, researchers have lacked the computing power to allow atomic-detail lattice dynamical calculations.

Smith said the PRL paper predicts the existence and forms of the protein crystal lattice modes.

“In doing so it throws out a challenge to next-generation neutron science to finally make the breakthrough and determine the forms and frequencies of the vibrations experimentally,” he said.

In other words, having overcome their computational hurdle, the lattice dynamics team is now ready for the SNS to test the simulation work and see if what is predicted is really there.

“Atomic-detail crystal dynamics calculations have not been possible before, and now we also have an experimental tool–the SNS–that will have the capability to test our simulations. We are looking forward to seeing the next generation of instruments at SNS demonstrate their talents.” Smith said, humbly adding, “Hopefully, the calculations won't be too painfully off the mark.”

Smith believes the SNS and its arsenal of specialized analytical instruments will be able to confirm–or contradict–what the simulations indicate.

“We appreciate that examining complicated proteins in this way will not be easy, even for SNS. However, with SNS instruments expected to be in some cases hundreds of times improved over currently existing facilities, we are confident that the neutron breakthrough is within reach,” Smith said.

ORNL is managed by UT-Battelle for the Department of Energy.

Media Contact

Bill Cabage EurekAlert!

More Information:

http://www.ornl.gov

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors