Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene that lowers cell stress could protect against Parkinson’s disease

01.10.2007
The discovery of a relationship between two cell enzymes and their role in keeping the cell’s energy generating machinery working smoothly could provide a new target for development of therapies for Parkinson’s disease (PD).

Research led by Dr L.Miguel Martins of the MRC Toxicology Unit at the University of Leicester and Dr Julian Downward of the Cancer Research UK London Research Institute has shown that the products of two genes called HtrA2 and PINK1 co-operate in preventing breakdown of cell function that could otherwise lead to Parkinson’s symptoms. The research is published online in Nature Cell Biology.

Dr Martins explained: ‘‘It is already known that mutations in genes linked to the mitochondria, the powerhouse of the cell, can make a person susceptible to PD. What was not clear, until recently, was the contribution made by the HtrA2 enzyme in keeping the mitochondria running smoothly.’’

The team has discovered that HtrA2 interacts with a second enzyme called PINK1 in times of cell stress to prevent the mitochondria from breaking down. And that this preservation of the mitochondria’s function has a protective effect by interrupting a pathway that might otherwise lead the cell to stop working which in turn generates wider symptoms like those of PD.

... more about:
»HtrA2 »Martins »PINK1 »Parkinson »Stress »mitochondria

‘‘We already knew that defects in HtrA2 and PINK1 are linked to Parkinson’s disease symptoms because mutations in these two genes are found in Parkinson’s disease patients. The aim of our research was to determine if these two genes cooperate ’’ Dr Martins added.

The research suggests that if a person has an abnormal copy of the PINK1 gene, this contributes to development of Parkinson’s disease by affecting the HtrA2 protein.

Dr Martins concluded: ‘‘By protecting the mitochondria, PINK1 and HtrA helps to limit environmental stress within the cell and maintain healthy function. Without these, the cell can’t function properly. This could explain cases of PD that seem to arise sporadically. Overall, the description of the HtrA2 pathway in response to cell stress will lead to improved understanding of the development of Parkinson’s disease and in the long-term hopefully to new therapeutic targets.’’

Ather Mirza | alfa
Further information:
http://www.le.ac.uk

Further reports about: HtrA2 Martins PINK1 Parkinson Stress mitochondria

More articles from Life Sciences:

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA eyes Pineapple Express soaking California

24.02.2017 | Earth Sciences

New gene for atrazine resistance identified in waterhemp

24.02.2017 | Agricultural and Forestry Science

New Mechanisms of Gene Inactivation may prevent Aging and Cancer

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>