Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers at IRB Barcelona discover one of the mechanisms that prevents the spread of colon cancer

01.10.2007
The first step in the development of colon cancer is the formation of benign tumours, called adenomas, in the intestine. Over time, these benign tumours may progress to produce colon cancer if they undergo a series of mutations and genetic alterations.

Researchers at IRB Barcelona under the direction of Eduard Batlle, ICREA researcher and head of IRB Barcelona’s Oncology Programme, have discovered a new mechanism by which the benign tumour cells receive instructions to grow in confined compartments, and no to invade other areas of the tissue. The description of this new tumour suppression mechanism is reported in the scientific journal Nature Genetics.

The scientists observed that adenomatous tumour cells have special surface receptors, called EphB2 and EphB3, which detect the presence of certain ligands in the healthy tissue that surround them. These receptors and their ligands serve to organize the structure of intestinal tissue. Thanks to the activity of EphB2 and EphB3, the tumour cells are forced to “listen to” the signals that they receive from their environment. These signals make the benign tumours grow in a confined space, from which they are unable to spread. “We knew that these receptors worked as tumour suppressors, but we did not know how. Now we have been able to observe that they compartmentalize the tumour, thereby preventing its spread”, explains Batlle.

Until the tumour cells learn to deactivate these receptors, they cannot invade other tissue outside the compartment. Batlle goes on to say, “as the tumour cells progress to become malignant, their genetic programme is refined and they remove the signals that block their growth, including these two receptors, which impose positional information”.

... more about:
»IRB »Receptors »Tissue »benign »colon

This study explains one of the key mechanisms of how a benign tumour transforms into a malignant one during the onset of colon cancer. Using experiments performed with animal models and in vitro cells, the scientists determined that the loss of compartmentalization, that is to say, the loss-of-function of these two receptors, is one of the vital factors in the development of adenoma-derived colon cancer.

It is estimated that between 30 and 50% of people over 60 years of age may develop one of these benign adenomas. Cancer of the colon ranks first in the list of the most common cancers in Spain, with more than 25,000 causes diagnosed each year. Last year alone, more than half a million people worldwide died as a result of this disease.

Sonia Armengou | alfa
Further information:
http://www.irbbarcelona.org

Further reports about: IRB Receptors Tissue benign colon

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Information integration and artificial intelligence for better diagnosis and therapy decisions

24.05.2017 | Information Technology

CRTD receives 1.56 Mill. Euro BMBF-funding for retinal disease research

24.05.2017 | Awards Funding

Devils Hole: Ancient Traces of Climate History

24.05.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>