Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Possible safer target for anti-clotting drugs found

28.09.2007
Researchers at the University of Illinois at Chicago College of Medicine have identified a new molecular target in blood clot formation, which seems to reduce clotting without excessive bleeding, the common side-effect of anti-clotting agents.

The findings are reported in the September issue of Molecular and Cellular Biology.

"It was very surprising to find an enzyme whose inhibition lessened platelet aggregation without abnormal bleeding, and we immediately realized that it could have very important implications for the treatment of cardiovascular disease," said Shafi Kuchay, a graduate student in pharmacology and first author of the paper.

When clots form, small blood cells called platelets begin to clump together. Aspirin and other anti-clotting agents reduce the risk of heart attack and stroke by blocking the biochemical pathway that causes platelets to become sticky. But all these drugs put patients at risk of excessive bleeding.

The UIC researchers made a mouse model that lacked a gene for a protease enzyme most commonly found in blood cells called calpain-1, in order to determine its function. They found that mice lacking calpain-1 had reduced platelet aggregation but did not have any abnormal bleeding.

The mice lacking calpain-1 (called "knockout" mice) had increased levels of another enzyme, known as protein tyrosine phosphatase-1B. When the mice were given a PTP1B inhibitor, the reduced platelet aggregation was restored. When calpain-1 knockout mice and mice lacking PTP1B were crossed to create double-knockout mice, platelet aggregation was restored in the offspring that lacked the genes for both enzymes. The researchers were thus able to establish that PTP1B turns off the signal for platelet aggregation and that calpain-1 regulated the amount and activity of this "off switch."

"Because of the danger of excessive bleeding, people taking anti-clotting medications are monitored carefully and warned not to exceed their recommended doses," said Dr. Athar Chishti of the UIC Cancer Center, and senior author of the study. "Our research unveils a new molecular target for anti-platelet drugs, which may avoid the dangerous side-effects of the current drugs."

In a secondary, serendipitous finding, the fact that the calpain-1 knockout mice have elevated PTP1B levels may prove important to research into diabetes and obesity.

"Mice that lack the gene for PTP1B have been known for some time to display increased insulin sensitivity and resistance to diet-induced obesity," said Chishti, who is professor of pharmacology. He noted that PTP1B inhibition has already been identified as a therapeutic goal by many researchers in diabetes and obesity.

"Our calpain-1 knockout mice with their elevated PTP1B levels offer a good model system for testing the potency of novel PTP1B inhibitors," he said.

Jeanne Galatzer-Levy | EurekAlert!
Further information:
http://www.uic.edu

Further reports about: Aggregation PTP1B Target anti-clotting calpain-1 clot drugs platelet

More articles from Life Sciences:

nachricht Complementing conventional antibiotics
24.05.2018 | Goethe-Universität Frankfurt am Main

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>