Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Possible safer target for anti-clotting drugs found

28.09.2007
Researchers at the University of Illinois at Chicago College of Medicine have identified a new molecular target in blood clot formation, which seems to reduce clotting without excessive bleeding, the common side-effect of anti-clotting agents.

The findings are reported in the September issue of Molecular and Cellular Biology.

"It was very surprising to find an enzyme whose inhibition lessened platelet aggregation without abnormal bleeding, and we immediately realized that it could have very important implications for the treatment of cardiovascular disease," said Shafi Kuchay, a graduate student in pharmacology and first author of the paper.

When clots form, small blood cells called platelets begin to clump together. Aspirin and other anti-clotting agents reduce the risk of heart attack and stroke by blocking the biochemical pathway that causes platelets to become sticky. But all these drugs put patients at risk of excessive bleeding.

The UIC researchers made a mouse model that lacked a gene for a protease enzyme most commonly found in blood cells called calpain-1, in order to determine its function. They found that mice lacking calpain-1 had reduced platelet aggregation but did not have any abnormal bleeding.

The mice lacking calpain-1 (called "knockout" mice) had increased levels of another enzyme, known as protein tyrosine phosphatase-1B. When the mice were given a PTP1B inhibitor, the reduced platelet aggregation was restored. When calpain-1 knockout mice and mice lacking PTP1B were crossed to create double-knockout mice, platelet aggregation was restored in the offspring that lacked the genes for both enzymes. The researchers were thus able to establish that PTP1B turns off the signal for platelet aggregation and that calpain-1 regulated the amount and activity of this "off switch."

"Because of the danger of excessive bleeding, people taking anti-clotting medications are monitored carefully and warned not to exceed their recommended doses," said Dr. Athar Chishti of the UIC Cancer Center, and senior author of the study. "Our research unveils a new molecular target for anti-platelet drugs, which may avoid the dangerous side-effects of the current drugs."

In a secondary, serendipitous finding, the fact that the calpain-1 knockout mice have elevated PTP1B levels may prove important to research into diabetes and obesity.

"Mice that lack the gene for PTP1B have been known for some time to display increased insulin sensitivity and resistance to diet-induced obesity," said Chishti, who is professor of pharmacology. He noted that PTP1B inhibition has already been identified as a therapeutic goal by many researchers in diabetes and obesity.

"Our calpain-1 knockout mice with their elevated PTP1B levels offer a good model system for testing the potency of novel PTP1B inhibitors," he said.

Jeanne Galatzer-Levy | EurekAlert!
Further information:
http://www.uic.edu

Further reports about: Aggregation PTP1B Target anti-clotting calpain-1 clot drugs platelet

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>