Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MicroRNA convicted of triggering metastasis

27.09.2007
Overabundance of a single microRNA can cause tumors to spread to distant tissues in mice

The jury is in: microRNAs can cause tumors to metastasize. These tiny molecules fine-tune protein production and play a powerful role in biological processes ranging from development to aging. Now scientists have proved that they can prompt otherwise sedentary cancer cells to move and invade other tissues.

Labs have been probing the relationship between aberrant microRNA levels and cancer for several years. They’ve shown that some microRNAs cause normal cells to divide rapidly and form tumors, but they’ve never demonstrated that microRNAs subsequently cause cancer cells to metastasize.

Now, working in the lab of Whitehead Member Robert Weinberg, postdoctoral fellow Li Ma has coaxed cancer cells to break away from a tumor and colonize distant tissues in mice by simply increasing the level of one microRNA. Her results appear online in Nature on September 26.

... more about:
»HoxD10 »MicroRNA »Protein »RNA »microRNA-10b

“Li has shown that a specific microRNA is able to cause profound changes in the behavior of cancer cells, which is striking considering that 10 years ago no one suspected microRNAs were involved in any biological process,” says Weinberg, who is also an MIT professor of biology.

Ma began with a list of 29 microRNAs expressed at different levels in tumors versus normal tissue. She examined their production in two groups of cancer cells—metastatic and non-metastatic. Metastatic cancer cells (including those taken directly from patients) contained much higher levels of one microRNA called microRNA-10b.

Next, Ma forced non-metastatic human breast cancer cells to produce lots of microRNA-10b by inserting extra copies of the gene. She injected the altered cancer cells into the mammary fat pads of mice, which soon developed breast tumors that metastasized.

So what caused this stunning metamorphosis?

MicroRNAs typically disrupt protein production by binding to the messenger RNAs that copy DNA instructions for proteins and carry them to “translators.” Ma used a program developed in the lab of Whitehead Member David Bartel to search for the target of microRNA-10b. She identified several candidates, including the messenger RNA for a gene called HoxD10.

Generally involved in development, Hox proteins control many genes active in an embryo. Some Hox proteins have also been implicated in cancer. HoxD10, for example, can block the expression of genes required for cancer cells to move—essentially applying the brakes to a migration process.

To test whether she had removed the brakes during her experiment, awakening the dormant migration process, Ma boosted the level of HoxD10 in the cancer cells with artificially high levels of microRNA-10b. The cells lost their newly acquired abilities to move and invade.

“I was able to fully reverse microRNA-10b induced migration and invasion, suggesting that HoxD10 is indeed a functional target,” Ma explains.

“During normal development, this microRNA probably enables cells to move from one part of the embryo to another,” adds Weinberg. “Its original function has been co-opted by carcinoma cells.”

Eric Bender | EurekAlert!
Further information:
http://www.whitehead.mit.edu

Further reports about: HoxD10 MicroRNA Protein RNA microRNA-10b

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>