Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MicroRNA convicted of triggering metastasis

27.09.2007
Overabundance of a single microRNA can cause tumors to spread to distant tissues in mice

The jury is in: microRNAs can cause tumors to metastasize. These tiny molecules fine-tune protein production and play a powerful role in biological processes ranging from development to aging. Now scientists have proved that they can prompt otherwise sedentary cancer cells to move and invade other tissues.

Labs have been probing the relationship between aberrant microRNA levels and cancer for several years. They’ve shown that some microRNAs cause normal cells to divide rapidly and form tumors, but they’ve never demonstrated that microRNAs subsequently cause cancer cells to metastasize.

Now, working in the lab of Whitehead Member Robert Weinberg, postdoctoral fellow Li Ma has coaxed cancer cells to break away from a tumor and colonize distant tissues in mice by simply increasing the level of one microRNA. Her results appear online in Nature on September 26.

... more about:
»HoxD10 »MicroRNA »Protein »RNA »microRNA-10b

“Li has shown that a specific microRNA is able to cause profound changes in the behavior of cancer cells, which is striking considering that 10 years ago no one suspected microRNAs were involved in any biological process,” says Weinberg, who is also an MIT professor of biology.

Ma began with a list of 29 microRNAs expressed at different levels in tumors versus normal tissue. She examined their production in two groups of cancer cells—metastatic and non-metastatic. Metastatic cancer cells (including those taken directly from patients) contained much higher levels of one microRNA called microRNA-10b.

Next, Ma forced non-metastatic human breast cancer cells to produce lots of microRNA-10b by inserting extra copies of the gene. She injected the altered cancer cells into the mammary fat pads of mice, which soon developed breast tumors that metastasized.

So what caused this stunning metamorphosis?

MicroRNAs typically disrupt protein production by binding to the messenger RNAs that copy DNA instructions for proteins and carry them to “translators.” Ma used a program developed in the lab of Whitehead Member David Bartel to search for the target of microRNA-10b. She identified several candidates, including the messenger RNA for a gene called HoxD10.

Generally involved in development, Hox proteins control many genes active in an embryo. Some Hox proteins have also been implicated in cancer. HoxD10, for example, can block the expression of genes required for cancer cells to move—essentially applying the brakes to a migration process.

To test whether she had removed the brakes during her experiment, awakening the dormant migration process, Ma boosted the level of HoxD10 in the cancer cells with artificially high levels of microRNA-10b. The cells lost their newly acquired abilities to move and invade.

“I was able to fully reverse microRNA-10b induced migration and invasion, suggesting that HoxD10 is indeed a functional target,” Ma explains.

“During normal development, this microRNA probably enables cells to move from one part of the embryo to another,” adds Weinberg. “Its original function has been co-opted by carcinoma cells.”

Eric Bender | EurekAlert!
Further information:
http://www.whitehead.mit.edu

Further reports about: HoxD10 MicroRNA Protein RNA microRNA-10b

More articles from Life Sciences:

nachricht 'Y' a protein unicorn might matter in glaucoma
23.10.2017 | Georgia Institute of Technology

nachricht Microfluidics probe 'cholesterol' of the oil industry
23.10.2017 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>