Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MicroRNA convicted of triggering metastasis

27.09.2007
Overabundance of a single microRNA can cause tumors to spread to distant tissues in mice

The jury is in: microRNAs can cause tumors to metastasize. These tiny molecules fine-tune protein production and play a powerful role in biological processes ranging from development to aging. Now scientists have proved that they can prompt otherwise sedentary cancer cells to move and invade other tissues.

Labs have been probing the relationship between aberrant microRNA levels and cancer for several years. They’ve shown that some microRNAs cause normal cells to divide rapidly and form tumors, but they’ve never demonstrated that microRNAs subsequently cause cancer cells to metastasize.

Now, working in the lab of Whitehead Member Robert Weinberg, postdoctoral fellow Li Ma has coaxed cancer cells to break away from a tumor and colonize distant tissues in mice by simply increasing the level of one microRNA. Her results appear online in Nature on September 26.

... more about:
»HoxD10 »MicroRNA »Protein »RNA »microRNA-10b

“Li has shown that a specific microRNA is able to cause profound changes in the behavior of cancer cells, which is striking considering that 10 years ago no one suspected microRNAs were involved in any biological process,” says Weinberg, who is also an MIT professor of biology.

Ma began with a list of 29 microRNAs expressed at different levels in tumors versus normal tissue. She examined their production in two groups of cancer cells—metastatic and non-metastatic. Metastatic cancer cells (including those taken directly from patients) contained much higher levels of one microRNA called microRNA-10b.

Next, Ma forced non-metastatic human breast cancer cells to produce lots of microRNA-10b by inserting extra copies of the gene. She injected the altered cancer cells into the mammary fat pads of mice, which soon developed breast tumors that metastasized.

So what caused this stunning metamorphosis?

MicroRNAs typically disrupt protein production by binding to the messenger RNAs that copy DNA instructions for proteins and carry them to “translators.” Ma used a program developed in the lab of Whitehead Member David Bartel to search for the target of microRNA-10b. She identified several candidates, including the messenger RNA for a gene called HoxD10.

Generally involved in development, Hox proteins control many genes active in an embryo. Some Hox proteins have also been implicated in cancer. HoxD10, for example, can block the expression of genes required for cancer cells to move—essentially applying the brakes to a migration process.

To test whether she had removed the brakes during her experiment, awakening the dormant migration process, Ma boosted the level of HoxD10 in the cancer cells with artificially high levels of microRNA-10b. The cells lost their newly acquired abilities to move and invade.

“I was able to fully reverse microRNA-10b induced migration and invasion, suggesting that HoxD10 is indeed a functional target,” Ma explains.

“During normal development, this microRNA probably enables cells to move from one part of the embryo to another,” adds Weinberg. “Its original function has been co-opted by carcinoma cells.”

Eric Bender | EurekAlert!
Further information:
http://www.whitehead.mit.edu

Further reports about: HoxD10 MicroRNA Protein RNA microRNA-10b

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>