Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Does the victim affect snake venom composition?

27.09.2007
A snake's intended prey might affect the type and evolution of toxins in their venom, research published in the online open access journal BMC Evolutionary Biology shows.

In snakes, venom composition varies both between species and within a particular species. Land snakes feed on a range of animals and birds, so scientists think that these snakes need a diverse array of toxins in their venom. Sea snakes, on the other hand, tend to have a more restricted diet, feeding only on fish. The toxins in these snakes have now been shown to be less diverse than those in terrestrial snakes.

Professor R Manjunatha Kini and colleagues from the National University of Singapore examined two kinds of sea snakes. They constructed complementary DNA libraries from the venom glands of the reptiles, representing only the stretches of DNA that code for venom gland proteins, and studied two types of protein toxins. The three-finger toxins (3FTx) and the phospholipase A2 (PLA2) enzymes are the main components of sea snake venom.

Although the sea snakes studied lived in very different aquatic environments, the toxins examined were similar in both and the genes encoding the toxins were highly conserved. By contrast, the same toxins in land snakes and sea kraits (which fall between land and sea snakes) showed much greater diversity. The researchers suggest that the toxin genes in sea snakes have remained relatively unchanged because of sea snakes share the same kind of feeding behaviour and diet.

... more about:
»Toxin »affect »composition »venom

"We examine toxin genes of snakes to identify new toxins, some of which will be useful in developing new therapeutic strategies to treat human diseases," says Prof Kini from the Department of Biological Sciences, National University of Singapore. "A new anticoagulant or a hypotensive toxin may help us develop new cardiovascular drugs to block unwanted clot formation or to lower the blood pressure."

Charlotte Webber | alfa
Further information:
http://www.biomedcentral.com

Further reports about: Toxin affect composition venom

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>