Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New type of drug shows promise in attacking melanoma in an innovative way

An experimental drug that attacks cancer in an entirely new way has shown promise in treating advanced melanoma, delaying progression of the disease and prolonging the lives of patients.

New research presented today (Wednesday) at the European Cancer Conference (ECCO 14) in Barcelona found that giving the new drug in addition to chemotherapy more than doubled the amount of time patients survived without progression of their cancer.

The study, according to Dr Anthony Williams, vice president of clinical research at Synta Pharmaceuticals Corp. in Lexington, Massachusetts, USA, included 81 patients with metastatic melanoma. Of those, 28 received treatment with the chemotherapy drug paclitaxel alone and 53 received paclitaxel plus the new drug, STA-4783.

“The median progression free survival was 1.8 months in the group who got chemotherapy alone, but 3.7 months in the group who got the combination,” Williams said. “This doubling in progression free survival is impressive for this cancer, and the result was achieved without substantial additional toxicity.”

He added: “Progression-free survival was linked to improvements in overall survival. Patients on the experimental combination survived on average for 12 months after being diagnosed, while those getting only paclitaxel survived on average 7.8 months. This is the first time an improvement in survival has been seen in a randomised, double-blind, multi-centre controlled trial for metastatic melanoma.”

The drug is the first in a new class called oxidative stress inducers. It works by increasing the amount of reactive oxygen species (ROS), such as hydrogen peroxide and superoxide, in cells. When the level exceeds the antioxidant capacity of cells, the cells are in a state of oxidative stress. All cells have some low level of ROS, but cancer cells naturally operate with a higher level of ROS and oxidative stress relative to normal cells. However, too much oxidative stress for too long results in cell death. STA-4783 kills only tumour cells because the additional stress introduced pushes cancer cells, but not healthy cells, over the critical threshold. Melanoma is one of several cancer types that are known to operate at a higher level of oxidative stress.

The concept of cancer cells operating at a higher level of oxidative stress than normal cells has been around for many years. However, it is only recently becoming a greater focus of attention in the oncology field.

Metastatic melanoma, where the skin cancer has spread to other parts of the body, is difficult to treat. Current therapies either have limited power or are highly toxic. The average survival of patients diagnosed with advanced melanoma is about six months.

The study also indicated that STA-4783 might boost the efficiency of chemotherapy drugs that induce cell death, or apoptosis, because it appears to lower the hurdle for activating that process, Williams said.

“These results are encouraging not only because of the findings in themselves but also because there are so few treatment options for patients. We believe STA-4783 has the potential to improve survival with a manageable side effect profile,” he said.

“We also believe there is nothing unique about metastatic melanoma and that oxidative stress has the potential to be an entirely new class of cancer treatment that could have applications in other types of cancer,” Williams added.

A larger study of STA-4783 in melanoma patients across Europe is now under way to further investigate the drug’s potential. Synta, the drug’s developer, funded the study presented at ECCO.

Catalogue no: 7002, Wednesday 09.00 hrs CET (Room 113)

Emma Ross | alfa
Further information:

Further reports about: Drug Oxidative STA-4783 Williams chemotherapy melanoma oxidative stress progression

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>