Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New type of drug shows promise in attacking melanoma in an innovative way

26.09.2007
An experimental drug that attacks cancer in an entirely new way has shown promise in treating advanced melanoma, delaying progression of the disease and prolonging the lives of patients.

New research presented today (Wednesday) at the European Cancer Conference (ECCO 14) in Barcelona found that giving the new drug in addition to chemotherapy more than doubled the amount of time patients survived without progression of their cancer.

The study, according to Dr Anthony Williams, vice president of clinical research at Synta Pharmaceuticals Corp. in Lexington, Massachusetts, USA, included 81 patients with metastatic melanoma. Of those, 28 received treatment with the chemotherapy drug paclitaxel alone and 53 received paclitaxel plus the new drug, STA-4783.

“The median progression free survival was 1.8 months in the group who got chemotherapy alone, but 3.7 months in the group who got the combination,” Williams said. “This doubling in progression free survival is impressive for this cancer, and the result was achieved without substantial additional toxicity.”

He added: “Progression-free survival was linked to improvements in overall survival. Patients on the experimental combination survived on average for 12 months after being diagnosed, while those getting only paclitaxel survived on average 7.8 months. This is the first time an improvement in survival has been seen in a randomised, double-blind, multi-centre controlled trial for metastatic melanoma.”

The drug is the first in a new class called oxidative stress inducers. It works by increasing the amount of reactive oxygen species (ROS), such as hydrogen peroxide and superoxide, in cells. When the level exceeds the antioxidant capacity of cells, the cells are in a state of oxidative stress. All cells have some low level of ROS, but cancer cells naturally operate with a higher level of ROS and oxidative stress relative to normal cells. However, too much oxidative stress for too long results in cell death. STA-4783 kills only tumour cells because the additional stress introduced pushes cancer cells, but not healthy cells, over the critical threshold. Melanoma is one of several cancer types that are known to operate at a higher level of oxidative stress.

The concept of cancer cells operating at a higher level of oxidative stress than normal cells has been around for many years. However, it is only recently becoming a greater focus of attention in the oncology field.

Metastatic melanoma, where the skin cancer has spread to other parts of the body, is difficult to treat. Current therapies either have limited power or are highly toxic. The average survival of patients diagnosed with advanced melanoma is about six months.

The study also indicated that STA-4783 might boost the efficiency of chemotherapy drugs that induce cell death, or apoptosis, because it appears to lower the hurdle for activating that process, Williams said.

“These results are encouraging not only because of the findings in themselves but also because there are so few treatment options for patients. We believe STA-4783 has the potential to improve survival with a manageable side effect profile,” he said.

“We also believe there is nothing unique about metastatic melanoma and that oxidative stress has the potential to be an entirely new class of cancer treatment that could have applications in other types of cancer,” Williams added.

A larger study of STA-4783 in melanoma patients across Europe is now under way to further investigate the drug’s potential. Synta, the drug’s developer, funded the study presented at ECCO.

Catalogue no: 7002, Wednesday 09.00 hrs CET (Room 113)

Emma Ross | alfa
Further information:
http://www.ecco-org.eu

Further reports about: Drug Oxidative STA-4783 Williams chemotherapy melanoma oxidative stress progression

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>