Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Immune system modulation can halt liver failure in animals Mass

26.09.2007
General researchers report new approach that may allow organ to regenerate

Massachusetts General Hospital (MGH) researchers have a developed a totally new approach to treating liver failure – manipulating the immune response. If the results of the animal study can be applied in human patients, the approach may be able to keep patients alive until donor organs become available or to support liver function until the organ can regenerate itself, eliminating the need for a transplant. The findings are being reported in the journal PLOS One.

“We have identified a non-hepatic source of cells that can easily be expanded to the scale required for clinical application,” says Martin Yarmush, MD, PhD, director of the Center for Engineering in Medicine at MGH, the paper’s senior author. He also is the Helen Andrus Benedict Professor of Surgery and Bioengineering in the Harvard-MIT Division of Health Science and Technology (HST) and a senior scientific staff member at the Boston Shriners Burns Hospital.

The liver is one of the few major organs that is able to regenerate itself. But when the organ is damaged by diseases like chronic hepatitis, long-term alcohol consumption, or other causes, ongoing inflammation can increase cell death and suppress the natural regenerative process. The only current treatment for end-stage liver failure is transplantation, which is limited by the organ supply and requires long-term immunosuppressive treatment. While external liver assist devices have successfully supported some patients, such machines require a supply of preferably human liver cells, which have been difficult to acquire and expand.

... more about:
»MGH »MSCs »Molecules »Treatment »approach »failure »liver »marrow »regenerate

For their investigation, the MGH research team used mesenchymal stem cells (MSCs) – cells from the bone marrow that develop into tissues supporting blood cell development in the marrow cavity. Previous research has shown that MSCs are able to inhibit several immune system activities. A supply of MSCs can be extracted from a patient’s own marrow and expanded to levels that could be therapeutically useful. To evaluate the ability of human MSCs to treat organ failure involving inflammatory activity, the investigators tested several ways of using the cells to treat rats in which liver failure had been induced.

Several approaches to administering MSCs reduced the biological signs of liver failure and improved the animals’ survival. Although simply transplanting MSCs was not effective, two methods of delivering molecules secreted by the cells lessened inflammation within the liver and halted cell death. Cycling the blood of rats with liver failure through an external bioreactor containing MSCs also greatly reduced the metabolic signs of liver failure in the animals. Even more significantly, 71 percent of the rats treated with the MSC-seeded bioreactor survived, while only 14 percent of those in a control group were alive one week later.

“One essential function of MSCs in the bone marrow is to secrete molecules that promote the growth and maturation of blood cells,” say co-lead author Biju Parekkadan, an HST graduate student working in Yarmush’s lab. “We are now finding that these same molecules can be used as potent immunotherapeutics and envision a multi-tiered treatment of liver failure based on this work. A patient presenting with liver failure could first be treated with an intravenous injection of an ‘off-the-shelf’ drug containing MSC-produced factors in an effort to halt cell damage and allow the organ to regenerate. If that is not effective, an MSC-based support device could be used as a bridge to transplantation or even as a long-term treatment.”

The researchers note that exactly how MSC-produced molecules inhibit the movement of immune cells into a damaged organ is not yet known and is currently under investigation. They also hope to examine the possibility of combining both MSCs and liver cells in a potential support device and to test the potential of MSCs to treat other immunological diseases.

Additional co-authors of the PLOS ONE paper – all investigators in the MGH Center for Engineering in Medicine – are co-lead authors Daan van Poll, MD, and Kazuhiro Saganuma, MD; and co-authors Edward Carter, Francois Berthiaume, PhD, and Arno Tilles, MD. The work was supported by grants from the National Institutes of Health, Shriners Hospitals for Children, the National Science Foundation and the Michael van Vlooten Foundation.

Massachusetts General Hospital (www.massgeneral.org), established in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of more than $500 million and major research centers in AIDS, cardiovascular research, cancer, computational and integrative biology, cutaneous biology, human genetics, medical imaging, neurodegenerative disorders, regenerative medicine, systems biology, transplantation biology and photomedicine.

Andrew Hyde | alfa
Further information:
http://www.plosone.org
http://www.plosone.org/doi/pone.0000941

Further reports about: MGH MSCs Molecules Treatment approach failure liver marrow regenerate

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>