Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flu virus trots globe during off season

25.09.2007
The influenza A virus does not lie dormant during summer but migrates globally and mixes with other viral strains before returning to the Northern Hemisphere as a genetically different virus, according to biologists who say the finding settles a key debate on what the virus does during the summer off season when it is not infecting people.

"Nobody really knows why flu is a winter disease in the temperate regions and more continuous in the tropics," says Edward Holmes, professor of biology at Penn State. "The big question is, ‘Why is flu seasonal"’"

Flu infections in the Northern Hemisphere typically follow a familiar pattern. Some time before the start of the winter infection season, the virus evolves, changing enough to evade the previously primed immune system. Then, just before summer, the virus disappears, only to resurface the next fall with a completely different genetic makeup, ready to fool the immune system anew.

But little is known about what happens to the virus between two successive winters, or how and where it is able to sustain itself.

... more about:
»Samples »Viral »season »tropics

The key question, Holmes explains, is whether the virus settles into a dormant state waiting for the right cues of temperature and sunlight to reactivate, or whether it migrates to viral reservoirs in the tropics, from where it is later reintroduced.

It is thought that places in Southeast Asia, where humans and animals live in close proximity, might be the permanent melting pot where viruses continually circulate and exchange genetic information.

To test the migration theory, Holmes and Martha Nelson, graduate student at Penn State, and their colleagues at the National Institutes of Health, Lone Simonsen, Cecile Viboud, and Mark A. Miller, analyzed the influenza A virus genomes of 900 virus samples from New Zealand, Australia and New York state dating between 1998-2005.

Their findings, outlined in this month's issue of PLoS Pathogens, reveal that the genomes of 52 viruses from New York are closely related to viruses that circulate during the winter (April to October) in New Zealand and Australia. These mixed family trees of viruses from both the north and south suggest there is widespread viral traffic across the equator each season, which contributes significantly to new epidemics in both hemispheres, the researchers note.

"If the viruses had been dormant, samples from successive seasons in each region would only be closely related to other viruses of that same region," said Holmes, who is also affiliated with Penn State's Center for Infectious Disease Dynamics (CIDD). "The fact that they are, instead, interspersed clearly tells us that the viruses are seasonally migrating across both hemispheres."

However, it is still fully unclear where and when the viruses are evolving to beat the immune system. According to Nelson, the virus changes its entire genetic makeup somewhere during the summer off-season, and it likely does this in the tropics, where the virus is found year-round.

"But we cannot say for sure at this point. To test this theory, we need viral samples from the tropics," Nelson added. The authors anticipate that samples from these regions will become available in the next few years.

The researchers are also not sure why the virus seems to die out during summer and what exactly triggers its return.

"It could be anything from human migration, aspects of climate, levels of sunlight, seasonal susceptibility of people or a combination of all these and more factors. That is another big question," said Holmes, whose work is funded by the National Institutes of Health.

What is certain, the Penn State researcher noted, is that multiple viruses arrive in New York state each season. In a connected world where emerging viruses can spread globally very quickly, Holmes says that the best way to protect communities is to have an extremely good system of disease surveillance in place and to develop universal vaccines that can protect against all kinds of influenza virus.

Amitabh Avasthi | EurekAlert!
Further information:
http://www.cidd.psu.edu/
http://www.psu.edu

Further reports about: Samples Viral season tropics

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>