Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain power- breakthrough in mathematical modelling

24.09.2007
A University of Leicester mathematician has been working with scientists in Japan and The Netherlands to develop a new technique that produces accurate mathematical models of the actual behaviour of nerve (neural) cells.

Developing such models requires detailed information about the dynamics of components responsible for the spike generation in the cell. The main barrier between mathematical modelling and reality is that the most of intrinsic variables of living cell are not available for direct observation. Dr Ivan Tyukin and his colleagues developed a method for automatic reconstructing of hidden variables describing the cell dynamics using only the recordings of evoked electric activity of the cell.

The work of Dr Ivan Tyukin and his colleagues means an advance in the understanding of principles behind computations in the biological brain. It also explores alternative ways to manipulate and enhance the brain function.

Automatic ‘copying’ of simulated neurons into artificial circuits (and potentially in micro-chips) provides electronic and behaviourally almost identical copies of living neurons, and creates new interfaces between biological tissue and mechanical systems.

... more about:
»Modelling »Tyukin »mathematical »neurons

Dr Tyukin commented: “The developed technique will enable the creation of novel brain-machine interfaces. The artificial neurons can be easily connected with the machines electronically. On the other hand, being sufficiently close copies of their biological counterparts, they can communicate with the biological cells.

Moreover, detecting and tracking instantaneous changes of the internal variables responsible for spike generation in the cells as a function of external chemical stimulation will allow the development of mathematical techniques for the systematic studying of extrasynaptic singalling, which accounts to up to 75 percent of communications among the neurons in some areas of the brain.”

Synaptic transmission is a form of point-to-point communication between neurons which traditionally believed to be the principal mechanism for information processing in the brain. However, recent studies have pointed to importance of extrasynaptic action of chemical transmitters that may provide an additional way how signals may be transferred and transformed.

Dr Tyukin explained: “Understanding and proper mathematical modelling of this phenomenon will allow us to further progress in understanding the physical principles behind computations in the biological brain.

Furthermore, detailed knowledge of how the brain function would change if we modify parameters of diffusion (e.g. changing extracellular volume or adding some large molecules into it) will enable an extra degree of controlling the brain. This is potentially relevant for medical purposes, for instance when we would like to “shield” the focus of stroke by diffusion barrier”

As well as Dr Ivan Tyukin, of the Department of Mathematics at the University of Leicester (UK), the project involves Prof. Cees van Leeuwen, Prof. Alexey Semyanov and Dr Inseon Song from RIKEN Brain Science Institute (Japan) who provide neurophysiological expertise and neuronal activity recordings; Professor Henk Nijmeijer and Mr. Erik Steur from Eindhoven University of Technology (the Netherlands) who are working on an electromechanical realization of the models and are involved in studying of their synchrony.

Ather Mirza | alfa
Further information:
http://www.le.ac.uk

Further reports about: Modelling Tyukin mathematical neurons

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

25.09.2017 | Trade Fair News

Highest-energy cosmic rays have extragalactic origin

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>