Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain power- breakthrough in mathematical modelling

24.09.2007
A University of Leicester mathematician has been working with scientists in Japan and The Netherlands to develop a new technique that produces accurate mathematical models of the actual behaviour of nerve (neural) cells.

Developing such models requires detailed information about the dynamics of components responsible for the spike generation in the cell. The main barrier between mathematical modelling and reality is that the most of intrinsic variables of living cell are not available for direct observation. Dr Ivan Tyukin and his colleagues developed a method for automatic reconstructing of hidden variables describing the cell dynamics using only the recordings of evoked electric activity of the cell.

The work of Dr Ivan Tyukin and his colleagues means an advance in the understanding of principles behind computations in the biological brain. It also explores alternative ways to manipulate and enhance the brain function.

Automatic ‘copying’ of simulated neurons into artificial circuits (and potentially in micro-chips) provides electronic and behaviourally almost identical copies of living neurons, and creates new interfaces between biological tissue and mechanical systems.

... more about:
»Modelling »Tyukin »mathematical »neurons

Dr Tyukin commented: “The developed technique will enable the creation of novel brain-machine interfaces. The artificial neurons can be easily connected with the machines electronically. On the other hand, being sufficiently close copies of their biological counterparts, they can communicate with the biological cells.

Moreover, detecting and tracking instantaneous changes of the internal variables responsible for spike generation in the cells as a function of external chemical stimulation will allow the development of mathematical techniques for the systematic studying of extrasynaptic singalling, which accounts to up to 75 percent of communications among the neurons in some areas of the brain.”

Synaptic transmission is a form of point-to-point communication between neurons which traditionally believed to be the principal mechanism for information processing in the brain. However, recent studies have pointed to importance of extrasynaptic action of chemical transmitters that may provide an additional way how signals may be transferred and transformed.

Dr Tyukin explained: “Understanding and proper mathematical modelling of this phenomenon will allow us to further progress in understanding the physical principles behind computations in the biological brain.

Furthermore, detailed knowledge of how the brain function would change if we modify parameters of diffusion (e.g. changing extracellular volume or adding some large molecules into it) will enable an extra degree of controlling the brain. This is potentially relevant for medical purposes, for instance when we would like to “shield” the focus of stroke by diffusion barrier”

As well as Dr Ivan Tyukin, of the Department of Mathematics at the University of Leicester (UK), the project involves Prof. Cees van Leeuwen, Prof. Alexey Semyanov and Dr Inseon Song from RIKEN Brain Science Institute (Japan) who provide neurophysiological expertise and neuronal activity recordings; Professor Henk Nijmeijer and Mr. Erik Steur from Eindhoven University of Technology (the Netherlands) who are working on an electromechanical realization of the models and are involved in studying of their synchrony.

Ather Mirza | alfa
Further information:
http://www.le.ac.uk

Further reports about: Modelling Tyukin mathematical neurons

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>