Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain power- breakthrough in mathematical modelling

24.09.2007
A University of Leicester mathematician has been working with scientists in Japan and The Netherlands to develop a new technique that produces accurate mathematical models of the actual behaviour of nerve (neural) cells.

Developing such models requires detailed information about the dynamics of components responsible for the spike generation in the cell. The main barrier between mathematical modelling and reality is that the most of intrinsic variables of living cell are not available for direct observation. Dr Ivan Tyukin and his colleagues developed a method for automatic reconstructing of hidden variables describing the cell dynamics using only the recordings of evoked electric activity of the cell.

The work of Dr Ivan Tyukin and his colleagues means an advance in the understanding of principles behind computations in the biological brain. It also explores alternative ways to manipulate and enhance the brain function.

Automatic ‘copying’ of simulated neurons into artificial circuits (and potentially in micro-chips) provides electronic and behaviourally almost identical copies of living neurons, and creates new interfaces between biological tissue and mechanical systems.

... more about:
»Modelling »Tyukin »mathematical »neurons

Dr Tyukin commented: “The developed technique will enable the creation of novel brain-machine interfaces. The artificial neurons can be easily connected with the machines electronically. On the other hand, being sufficiently close copies of their biological counterparts, they can communicate with the biological cells.

Moreover, detecting and tracking instantaneous changes of the internal variables responsible for spike generation in the cells as a function of external chemical stimulation will allow the development of mathematical techniques for the systematic studying of extrasynaptic singalling, which accounts to up to 75 percent of communications among the neurons in some areas of the brain.”

Synaptic transmission is a form of point-to-point communication between neurons which traditionally believed to be the principal mechanism for information processing in the brain. However, recent studies have pointed to importance of extrasynaptic action of chemical transmitters that may provide an additional way how signals may be transferred and transformed.

Dr Tyukin explained: “Understanding and proper mathematical modelling of this phenomenon will allow us to further progress in understanding the physical principles behind computations in the biological brain.

Furthermore, detailed knowledge of how the brain function would change if we modify parameters of diffusion (e.g. changing extracellular volume or adding some large molecules into it) will enable an extra degree of controlling the brain. This is potentially relevant for medical purposes, for instance when we would like to “shield” the focus of stroke by diffusion barrier”

As well as Dr Ivan Tyukin, of the Department of Mathematics at the University of Leicester (UK), the project involves Prof. Cees van Leeuwen, Prof. Alexey Semyanov and Dr Inseon Song from RIKEN Brain Science Institute (Japan) who provide neurophysiological expertise and neuronal activity recordings; Professor Henk Nijmeijer and Mr. Erik Steur from Eindhoven University of Technology (the Netherlands) who are working on an electromechanical realization of the models and are involved in studying of their synchrony.

Ather Mirza | alfa
Further information:
http://www.le.ac.uk

Further reports about: Modelling Tyukin mathematical neurons

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>