Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain power- breakthrough in mathematical modelling

24.09.2007
A University of Leicester mathematician has been working with scientists in Japan and The Netherlands to develop a new technique that produces accurate mathematical models of the actual behaviour of nerve (neural) cells.

Developing such models requires detailed information about the dynamics of components responsible for the spike generation in the cell. The main barrier between mathematical modelling and reality is that the most of intrinsic variables of living cell are not available for direct observation. Dr Ivan Tyukin and his colleagues developed a method for automatic reconstructing of hidden variables describing the cell dynamics using only the recordings of evoked electric activity of the cell.

The work of Dr Ivan Tyukin and his colleagues means an advance in the understanding of principles behind computations in the biological brain. It also explores alternative ways to manipulate and enhance the brain function.

Automatic ‘copying’ of simulated neurons into artificial circuits (and potentially in micro-chips) provides electronic and behaviourally almost identical copies of living neurons, and creates new interfaces between biological tissue and mechanical systems.

... more about:
»Modelling »Tyukin »mathematical »neurons

Dr Tyukin commented: “The developed technique will enable the creation of novel brain-machine interfaces. The artificial neurons can be easily connected with the machines electronically. On the other hand, being sufficiently close copies of their biological counterparts, they can communicate with the biological cells.

Moreover, detecting and tracking instantaneous changes of the internal variables responsible for spike generation in the cells as a function of external chemical stimulation will allow the development of mathematical techniques for the systematic studying of extrasynaptic singalling, which accounts to up to 75 percent of communications among the neurons in some areas of the brain.”

Synaptic transmission is a form of point-to-point communication between neurons which traditionally believed to be the principal mechanism for information processing in the brain. However, recent studies have pointed to importance of extrasynaptic action of chemical transmitters that may provide an additional way how signals may be transferred and transformed.

Dr Tyukin explained: “Understanding and proper mathematical modelling of this phenomenon will allow us to further progress in understanding the physical principles behind computations in the biological brain.

Furthermore, detailed knowledge of how the brain function would change if we modify parameters of diffusion (e.g. changing extracellular volume or adding some large molecules into it) will enable an extra degree of controlling the brain. This is potentially relevant for medical purposes, for instance when we would like to “shield” the focus of stroke by diffusion barrier”

As well as Dr Ivan Tyukin, of the Department of Mathematics at the University of Leicester (UK), the project involves Prof. Cees van Leeuwen, Prof. Alexey Semyanov and Dr Inseon Song from RIKEN Brain Science Institute (Japan) who provide neurophysiological expertise and neuronal activity recordings; Professor Henk Nijmeijer and Mr. Erik Steur from Eindhoven University of Technology (the Netherlands) who are working on an electromechanical realization of the models and are involved in studying of their synchrony.

Ather Mirza | alfa
Further information:
http://www.le.ac.uk

Further reports about: Modelling Tyukin mathematical neurons

More articles from Life Sciences:

nachricht Designer cells: artificial enzyme can activate a gene switch
22.05.2018 | Universität Basel

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Spinning rugby balls: The rotation of the most massive galaxies

23.05.2018 | Physics and Astronomy

Raiding the rape field

23.05.2018 | Agricultural and Forestry Science

Turning entanglement upside down

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>