Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

EURYI project to understand how the brain is wired during embryogenesis

24.09.2007
One of the great questions of neurobiology, how the brain is built up during embryonic development, could be resolved by a young French scientist in an award winning project organised by the European Science Foundation (ESF) and the European Heads of Research Councils (EuroHORCS).

Sonia Garel has won one of the prestigious EURYI Awards granted annually to young scientists, to pursue her ground breaking research into mammalian forebrain development. She will tackle a number of fundamental questions relating both to the wiring of the brain during growth, and how evolution drove forward the sophisticated neural circuitry associated with mammals.

Garel will focus on two key processes involved in development of neural circuitry in the forebrains of young mammals as they grow. One of these processes concerns the formation of connections between neurons, the nerve cells of the brain. These connections are needed to process sensory information, execute motor functions, and provide the network for cognitive abilities. They are made up of nerve fibres called axons, which conduct electrical impulses between neurons. The other key process involves migration of brain cells to their correct positions after their manufacture. As Garel noted, these two processes are coordinated in the development of the mammalian brain, and yet have until now been studied separately for the sake of simplicity. Garel and her colleagues have already broken new ground by demonstrating the link between axon formation, and migration of cells, within the brain.

“While axon guidance and cell migration have been usually studied as independent processes, our group has shown for the first time that they are elegantly coordinated to ensure the formation of a major long-range connection of the mammalian brain, the thalamocortical projection,” said Garel. The thalamocortical projection is one of the significant evolutionary developments of the forebrain, comprising bundles of axonal connections linking two key centres, the thalamus, which relays external sensory information, and the cerebral cortex, the most highly developed region comprising the so-called grey matter.

The thalamocortical projections, that first appeared in reptiles, have been remodelled in rodents and in primates, and are therefore of great interest in the study of neurological evolution. This phase of accelerated changes in connections correlates with an increase in cell migration in the brain. But there was a price to pay for this sophistication in the form of disorders associated with neurological dysfunctions, which particularly afflict humans. Garel hopes that her work will also advance understanding of some of these disorders, which can arise through defects both in the network of axonal connections and in the process of cell migration.

“Understanding how neural circuits are elaborated during mammalian forebrain development is essential to gain insights into its normal functioning and to make progress in our comprehension of neurological and psychiatric disorders,” said Garel. But malfunctions in cell migration can be just as harmful. “During development, cell migration is essential to control the positioning of cells in the brain, and cell migration defects have been associated with several neuropsychiatry diseases such as epilepsy, schizophrenia or bipolar disorders,” said Garel.

Garel will conduct her research in mice, aiming to improve understanding of how cell migration and axonal circuit development fit together. “We have showed that, in mice embryos, migrating cells act as dynamic guideposts to guide growing axons towards their final target in the brain,” said Garel. “Our study thus opens a novel perspective of the role of cell migration in the formation of brain connections during normal and pathological development.”

The EURYI awards scheme, entering its fourth and final year, is designed to attract outstanding young scientists from around the world to create their own research teams at European research centres and launch potential world-leading research careers. Most awards are between €1,000,000 and €1,250,000, comparable in size to the Nobel Prize. Garel will receive her award in Helsinki, Finland on 27 September 2007 with other 19 young researchers.

Sonia Garel, 35 year-old French citizen, is an independent young investigator at Paris’ Ecole Normale Supérieur, studying forebrain regionalisation and formation of thalamocortical projections.

Dr. Garel gained her doctorate in molecular and cellular pharmacology at the University of Paris VI, which she followed by a post-doctoral stay at the University of California in San Francisco. She came back to France in 2003 and was selected for a career development award from the Human Frontier Science Program Organisation. She has been a regular contributor to journals such as Development.

Thomas Lau | alfa
Further information:
http://www.esf.org
http://www.esf.org/activities/euryi/awards/2007/sonia-garel.html

Further reports about: Axon Brain Development EURYI Migration Young forebrain formation mammalian thalamocortical

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Heating quantum matter: A novel view on topology

22.08.2017 | Physics and Astronomy

Stretchable biofuel cells extract energy from sweat to power wearable devices

22.08.2017 | Power and Electrical Engineering

New technique to treating mitral valve diseases: First patient data

22.08.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>