Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mass Spectrometry of Living Subjects

21.09.2007
New sampling method allows direct mass-spectrometric analysis of the skin’s surface

In science fiction movies, it happens all the time: A small device is briefly held against the skin of a sick crewmember and seconds later the monitor displays what ails him. This futuristic image could someday be real.

Researchers from the ETH in Zurich, Switzerland, describe a first step in this direction in the journal Angewandte Chemie: a new method of sampling living biological organisms for direct mass-spectrometric examination.

By using a beam of nitrogen, substances from the skin of a test subject can be directed into a mass spectrometer for rapid and precise analysis. Aside from rapid clinical diagnosis without blood samples, this new technique could be enlisted for research into metabolic processes, doping tests, defense against terrorism, and the inspection of foods.

... more about:
»Spectrometer »Surface »mass »mass spectrometer

In recent years, mass spectrometry has developed into an important analytical technique for biological samples. For the actual analysis, the matrix of the sample must be removed so that the desired analytes can be accurately detected. This complicated sample preparation makes routine examinations with high sample throughput difficult.

The new process developed by Renato Zenobi and his group (an advancement on their process for breath analysis as reported in Angewandte Press Release 44/06) works without needing such efforts. Instead of introducing samples into an electrospray mass spectrometer (ESI-MS) in solution, as in the usual procedure, and atomizing them with a gas, the analytes in the new process are “sucked” right off the surface. Nitrogen is blown through a small nozzle onto the sample surface, such as the skin of a test subject. When the gas strikes the surface, it takes up semivolatile substances. The gas stream is then directed right into the electrospray source of the mass spectrometer. Here it crosses a stream of charged water droplets that take up the molecules of interest and charge them. Analysis takes only seconds.

This method allows chemical “fingerprints” to be taken from human skin. For example, it is possible to detect if someone is a smoker, or if a test subject has had a cup of coffee. The researchers were able to detect traces of explosives and model substances for chemical weapons. “This new method is not technically complicated,” explains Zenobi, “ordinary electrospray mass spectrometers can quickly and easily be adapted.”

Mass screening of food could also be carried out rapidly, inexpensively, and reliably with this new technique. Frozen samples like meat or fish do not even need to be thawed. Spoiled food can be detected by a characteristic change in its molecular fingerprint.

Author: Renato Zenobi, ETH Zürich (Switzerland), http://www.zenobi.ethz.ch/zenobi.html

Title: Neutral Desorption Sampling of Living Objects for Rapid Analysis by Extractive Electrospray Ionization Mass Spectrometry

Angewandte Chemie International Edition 2007, 46, No. 40, 7591–7594, doi: 10.1002/anie.200702200

Renato Zenobi | Angewandte Chemie
Further information:
http://www.zenobi.ethz.ch/zenobi.html
http://pressroom.angewandte.org

Further reports about: Spectrometer Surface mass mass spectrometer

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>