Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


To evade chemotherapy, some cancer cells mimic stem cells

Anti-cancer treatments often effectively shrink the size of tumors, but some might have an opposite effect, actually expanding the small population of cancer stem cells believed to drive the disease, according to findings presented today in Atlanta, Georgia at the American Association for Cancer Research’s second International Conference on Molecular Diagnostics in Cancer Therapeutic Development.

“Our experiments suggest that some treatments could be producing more cancer stem cells that then are capable of metastasizing, because these cells are trying to find a way to survive the therapy,” said one of the study’s investigators, Vasyl Vasko, M.D. Ph.D., a pathologist at the Uniformed Services University of the Health Sciences in Bethesda, Md.

“This may help explain why the expression of stem cell markers has been associated with resistance to chemotherapy and radiation treatments and poor outcome for patients with cancers including prostate, breast and lung cancers,” Dr. Vasko said. “That tells us that understanding how to target these markers and these cells could prove useful in treating these cancers.”

The cancer stem cell markers include Nanog and BMI1, both of which contribute to stem cells’ defining ability to renew themselves and differentiate into different cell types, Dr. Vasko said. These same molecules are found in embryonic stem cells.

... more about:
»Marker »Stem »Vasko »chemotherapy »stem cells

Researchers have recently debated the notion that some therapies are not capable of eradicating cancer because they do not target the cancer stem cells responsible for tumor development. To test this hypothesis, Dr. Vasko, along with scientists from the CRTRC Institute for Drug Development in San Antonio and from the Johns Hopkins University, set out to measure both stem cells markers and tumor volume before and after treatment in a mouse model.

They selected a rare form of cancer, mesenchymal chondrosarcoma (MCS), which has not been well described and for which there is no effective treatment. The researchers first determined that Nanog and BMI1 stem cell markers were more highly expressed in metastatic tumors compared to primary tumors. “This suggests that expression of the marker plays some role in development of metastasis,” Dr. Vasko said.

They then applied various therapies - from VEGF inhibitors such as Avastin to the proteasome inhibitor Velcade - in mice implanted with human MSC, and analyzed the effects on tumors. Some of the treatments seemed to work, because they led to a dramatic decrease in the size of the tumors, Dr. Vasko said. But analysis of stem cell expression before and after treatment revealed that even as some anti-cancer treatments shrank tumors, they increased expression of Nanog and BMI1. “These treatments were not enough to completely inhibit tumor growth, and the cancer stem cell markers were still present,” Dr. Vasko said.

Use of the agents Velcade and Docetaxel led to the most significant increase in stem cell markers within the treated tumor, while ifosfamide and Avastin inhibited expression of the markers in this cancer subtype.

“We hypothesize that the tumor escapes from chemotherapy by induction of stem cell marker expression,” he said. “The small number of cells that survive the treatment could then generate another tumor that metastasizes.”

Dr. Vasko doesn’t know how this happens, but theorizes that “dying cells could secrete a lot of factors that induce expression of stem cell markers in other cancer cells. I think they are trying to survive and they use a mechanism from their experience of embryonic life.”

Greg Lester | EurekAlert!
Further information:

Further reports about: Marker Stem Vasko chemotherapy stem cells

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>