Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Genetic Cause Discovered for Systemic Lupus Erythematosus

Mutations in a gene researchers call TREX1 is one cause for systemic lupus erythematosus (SLE), a severe and incurable autoimmune disease. This is the result of a new study headed by Professor Norbert Hübner from the Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch and Dr. Min Ae Lee-Kirsch from the Technical University Dresden, (both in Germany) in collaboration with scientists from Finland, Sweden, the United Kingdom, and the USA. The study has now been published in the latest issue of Nature Genetics (Vol. 39, No. 9, pp. 1065-1067, 2007).

The exact causes for SLE are still unknown. Triggers are thought to include viruses, the sunlight, drug reactions, or a specific genetic predisposition. Symptoms of SLE can be inflammations of the skin, the joints, the heart, the lungs, the kidney, and the nervous system. The name of the disease refers to red spots on the skin which resemble the bites of a wolfe (latin: lupus). As the disease can affect any part of the body, it is "systemic". SLE belongs to the group of autoimmune diseases, because the body's immune system attacks its own healthy cells and tissues, causing inflammations. About 40,000 individuals are affected in Germany, most of them are women.

In a family suffering from a rare form of lupus, Dr. Lee-Kirsch and Professor Hübner discovered various mutations in the gene TREX1. Hence, they wanted to know if mutations in TREX1 also play a role in SLE, the most common form of lupus. Collecting blood samples from patients with SLE from the UK, Germany, and Finland, the researcher compared them with samples from healthy individuals. As suspected, patients with SLE carried mutations in the TREX1 gene whereas healthy individuals did not. Nevertheless, the mutations found in TREX1 are not responsible for all types of SLE.

The product of the gene TREX1 is a protein which plays a role in apoptosis, a program in which cells literally induce their own death when defective. Thus, apoptosis protects the body from harm. Once apoptosis starts, TREX1 gets rid of its junctions in the cytoplasm and translocates into the nucleus of a damaged cell to digest its DNA.

... more about:
»Genetic »Lupus »SLE »TREX1 »apoptosis »mutations

Mutations in TREX1, however, change part of the protein with which it is chained to the cell's cytoplasm. In the case of apoptosis, TREX1 gets rid of its molecular chains, translocates into the cell's nucleus, and spreads to other parts of the cell too. The immune system seems to be mislead as it produces autoantibodies against these cell particles and also against other healthy cells. Why autoantibodies are produced still remains unclear. "Further studies will have to shed light onto this problem", stresses Professor Hübner.

*Mutations in the 3´-5´ DNA exonuclease TREX1 are associated with systemic lupus erythematosus

Min Ae Lee-Kirsch1, Maolian Gong2#, Dipanjan Chowdhury3#, Lydia Senenko1#, Kerstin Engel1#, Young-Ae Lee2,4#, Udesh de Silva5, Suzanna L. Bailey5, Torsten Witte6, Timothy J. Vyse7, Juha Kere8, Christiane Pfeiffer9, Scott Harvey10, Andrew Wong7, Sari Koskenmies11,12, Oliver Hummel2, Klaus Rohde2, Reinhold E. Schmidt6, Anna F. Dominiczak13, Manfred Gahr1, Thomas Hollis5, Fred W. Perrino10, Judy Lieberman3, & Norbert Hübner2

1Klinik für Kinder- und Jugendmedizin, Technische Universität Dresden, 01307 Dresden, Germany
2Max-Delbrück-Center for Molecular Medicine (MDC), Berlin-Buch, Germany
3CBR Institute for Biomedical Research, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 01225, USA
4Charité - Universitätsmedizin Berlin, Pediatric Pneumology and Immunology, Campus Virchow-Klinikum, 13553 Berlin, Germany
5Center for Structural Biology, Department of Biochemistry, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA
6Medizinische Hochschule Hannover, Klinische Immunologie, 30625 Hannover, Germany
7Imperial College, Faculty of Medicine, Section of Rheumatology and Molecular Genetics, Hammersmith Hospital, London W12 0NN, UK.
8Karolinska Institute, Department of Biosciences and Nutrition, and Clinical Research Centre, 14157 Huddinge, Sweden
9Klinik für Dermatologie, Technische Universität Dresden, 01307 Dresden, Germany
10Department of Biochemistry, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA
11University of Helsinki, Department of Medical Genetics and 12Department of Dermatology, 00014 Helsinki, Finland
13Department of Medicine and Therapeutics, Western Infirmary, Glasgow University, Glasgow G11 6NT, UK

#These authors contributed equally.

Correspondence requests should be addressed to M. L.-K. ( and N. H. (

Barbara Bachtler
Press and Public Affairs
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
Robert-Rössle-Straße 10; 13125 Berlin; Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
Weitere Informationen:

Barbara Bachtler | idw
Further information:

Further reports about: Genetic Lupus SLE TREX1 apoptosis mutations

More articles from Life Sciences:

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

nachricht Researchers Discover New Anti-Cancer Protein
22.03.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>