Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic Cause Discovered for Systemic Lupus Erythematosus

20.09.2007
Mutations in a gene researchers call TREX1 is one cause for systemic lupus erythematosus (SLE), a severe and incurable autoimmune disease. This is the result of a new study headed by Professor Norbert Hübner from the Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch and Dr. Min Ae Lee-Kirsch from the Technical University Dresden, (both in Germany) in collaboration with scientists from Finland, Sweden, the United Kingdom, and the USA. The study has now been published in the latest issue of Nature Genetics (Vol. 39, No. 9, pp. 1065-1067, 2007).

The exact causes for SLE are still unknown. Triggers are thought to include viruses, the sunlight, drug reactions, or a specific genetic predisposition. Symptoms of SLE can be inflammations of the skin, the joints, the heart, the lungs, the kidney, and the nervous system. The name of the disease refers to red spots on the skin which resemble the bites of a wolfe (latin: lupus). As the disease can affect any part of the body, it is "systemic". SLE belongs to the group of autoimmune diseases, because the body's immune system attacks its own healthy cells and tissues, causing inflammations. About 40,000 individuals are affected in Germany, most of them are women.

In a family suffering from a rare form of lupus, Dr. Lee-Kirsch and Professor Hübner discovered various mutations in the gene TREX1. Hence, they wanted to know if mutations in TREX1 also play a role in SLE, the most common form of lupus. Collecting blood samples from patients with SLE from the UK, Germany, and Finland, the researcher compared them with samples from healthy individuals. As suspected, patients with SLE carried mutations in the TREX1 gene whereas healthy individuals did not. Nevertheless, the mutations found in TREX1 are not responsible for all types of SLE.

The product of the gene TREX1 is a protein which plays a role in apoptosis, a program in which cells literally induce their own death when defective. Thus, apoptosis protects the body from harm. Once apoptosis starts, TREX1 gets rid of its junctions in the cytoplasm and translocates into the nucleus of a damaged cell to digest its DNA.

... more about:
»Genetic »Lupus »SLE »TREX1 »apoptosis »mutations

Mutations in TREX1, however, change part of the protein with which it is chained to the cell's cytoplasm. In the case of apoptosis, TREX1 gets rid of its molecular chains, translocates into the cell's nucleus, and spreads to other parts of the cell too. The immune system seems to be mislead as it produces autoantibodies against these cell particles and also against other healthy cells. Why autoantibodies are produced still remains unclear. "Further studies will have to shed light onto this problem", stresses Professor Hübner.

*Mutations in the 3´-5´ DNA exonuclease TREX1 are associated with systemic lupus erythematosus

Min Ae Lee-Kirsch1, Maolian Gong2#, Dipanjan Chowdhury3#, Lydia Senenko1#, Kerstin Engel1#, Young-Ae Lee2,4#, Udesh de Silva5, Suzanna L. Bailey5, Torsten Witte6, Timothy J. Vyse7, Juha Kere8, Christiane Pfeiffer9, Scott Harvey10, Andrew Wong7, Sari Koskenmies11,12, Oliver Hummel2, Klaus Rohde2, Reinhold E. Schmidt6, Anna F. Dominiczak13, Manfred Gahr1, Thomas Hollis5, Fred W. Perrino10, Judy Lieberman3, & Norbert Hübner2

1Klinik für Kinder- und Jugendmedizin, Technische Universität Dresden, 01307 Dresden, Germany
2Max-Delbrück-Center for Molecular Medicine (MDC), Berlin-Buch, Germany
3CBR Institute for Biomedical Research, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 01225, USA
4Charité - Universitätsmedizin Berlin, Pediatric Pneumology and Immunology, Campus Virchow-Klinikum, 13553 Berlin, Germany
5Center for Structural Biology, Department of Biochemistry, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA
6Medizinische Hochschule Hannover, Klinische Immunologie, 30625 Hannover, Germany
7Imperial College, Faculty of Medicine, Section of Rheumatology and Molecular Genetics, Hammersmith Hospital, London W12 0NN, UK.
8Karolinska Institute, Department of Biosciences and Nutrition, and Clinical Research Centre, 14157 Huddinge, Sweden
9Klinik für Dermatologie, Technische Universität Dresden, 01307 Dresden, Germany
10Department of Biochemistry, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA
11University of Helsinki, Department of Medical Genetics and 12Department of Dermatology, 00014 Helsinki, Finland
13Department of Medicine and Therapeutics, Western Infirmary, Glasgow University, Glasgow G11 6NT, UK

#These authors contributed equally.

Correspondence requests should be addressed to M. L.-K. (minae.lee-kirsch@uniklinikum-dresden.de) and N. H. (nhuebner@mdc-berlin.de)

Barbara Bachtler
Press and Public Affairs
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
Robert-Rössle-Straße 10; 13125 Berlin; Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de
Weitere Informationen:
http://www.nature.com/ng/journal/v39/n9/pdf/ng2091.pdf
http://www.nature.com/ng/journal/v39/n9/suppinfo/ng2091_S1.html
http://www.mdc-berlin.de/englisch/research/research_areas/cardiovascular/huebner.htm

http://en.wikipedia.org/wiki/Lupus_erythematosus

Barbara Bachtler | idw
Further information:
http://www.mdc-berlin.de/englisch/about_the_mdc/public_relations/e_index.htm

Further reports about: Genetic Lupus SLE TREX1 apoptosis mutations

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>