Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Cell death in blood vessels may be an early target to prevent coronary disease

EVGN scientist Martin Bennett, British Heart Foundation Professor of Cardiovascular Sciences at the Addenbrooke’s Hospital, Division of Cardiovascular Medicine in Cambridge (UK), identified the direct consequences of apoptosis of Vascular Smooth Muscle Cells (VSMC), the programmed cell death that occurs in atherosclerosis, which is a hallmark of vascular degeneration - leading as it often does to myocardial infarction.

In addition, the scientist highlighted the strong parallels existing between the apoptotic microenvironment in cardiovascular disease and those present in the tissues of a few degenerative diseases. In the long run, these data could provide better understanding of other untreatable human pathologies.

The sequence of reactions triggered by apoptosis was presented today, September 19th, at the Fourth Annual Meeting of the European Vascular Genomics Network (EVGN,, the Network of excellence on cardiovascular disease, which is running in parallel with the 4th European Meeting on Vascular Biology and Medicine (EMVBM).

With more than 400 attendants from all over Europe and representatives from the rest of the world, among whom there are cardiologists, diabetes researchers, hematologists, thrombosis scientists, gene therapists and oncologists, the Bristol Meeting offers a stimulating environment for discussion and future planning.

... more about:
»Plaque »VSMC »apoptosis »atherosclerosis »prevent

Apoptosis, the programmed cell death that occurs when a cell has accumulated sufficient DNA damages that it is unable to repair its DNA, is centrally involved in the pathogenesis of a whole range of human illnesses and injury states, and atherosclerosis is no exception. However, until recently, its exact role in this pathology was unclear.

Martin Bennett, a leading cardiologist and atherosclerosis expert, set up a series of targeted experiments aimed at understanding the precise mechanism of action of this, otherwise useful, process.

“We decided – explained Bennett – to elucidate the role that VSMCs death has in the timeline of atherosclerosis progression. Using a mouse model that reproduces the human condition, we induced apoptosis of VSMCs only inside the vessel wall, observing, at first, a clear enlargement of the atherosclerotic plaques that almost doubled their size. This is a bad prognostic factor, as the more they grow the more the plaques become brittle”. That was exactly the second observation made: after the initial growth, the fibrous cap that encloses a typical plaque became thinner, whereas the plaque core increased. “All these signals – points out Bennett – could be useful at the bedside, for a real-time monitoring of atherosclerosis progression”. Not enough, after these first events, the researchers confirmed that the whole region involved in the apoptotic process undergoes calcification. This, in turn, prevents the remodelling of a vessel and, when occurs in a patient, it worsens his or her prognosis.

Furthermore, from Bennett’s investigation emerged striking analogies with two degenerative diseases: Marfan’s syndrome and Hutchinson Gilford Progeria. In both these diseases the tissues look much similar to the one analysed by Bennett in the atherosclerotic settings, with areas of calcifications, and the same kind of infiltrating cells.

“Early as they are, these data rise hope that apoptosis could be targeted at different levels, in order to prevent the cascade of reactions so noxious for the health. And that, possibly, it will help to find novel therapies also for other ailments”.

Francesca Noceti | alfa
Further information:

Further reports about: Plaque VSMC apoptosis atherosclerosis prevent

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>