Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cell death in blood vessels may be an early target to prevent coronary disease

20.09.2007
EVGN scientist Martin Bennett, British Heart Foundation Professor of Cardiovascular Sciences at the Addenbrooke’s Hospital, Division of Cardiovascular Medicine in Cambridge (UK), identified the direct consequences of apoptosis of Vascular Smooth Muscle Cells (VSMC), the programmed cell death that occurs in atherosclerosis, which is a hallmark of vascular degeneration - leading as it often does to myocardial infarction.

In addition, the scientist highlighted the strong parallels existing between the apoptotic microenvironment in cardiovascular disease and those present in the tissues of a few degenerative diseases. In the long run, these data could provide better understanding of other untreatable human pathologies.

The sequence of reactions triggered by apoptosis was presented today, September 19th, at the Fourth Annual Meeting of the European Vascular Genomics Network (EVGN, www.evgn.org), the Network of excellence on cardiovascular disease, which is running in parallel with the 4th European Meeting on Vascular Biology and Medicine (EMVBM).

With more than 400 attendants from all over Europe and representatives from the rest of the world, among whom there are cardiologists, diabetes researchers, hematologists, thrombosis scientists, gene therapists and oncologists, the Bristol Meeting offers a stimulating environment for discussion and future planning.

... more about:
»Plaque »VSMC »apoptosis »atherosclerosis »prevent

Apoptosis, the programmed cell death that occurs when a cell has accumulated sufficient DNA damages that it is unable to repair its DNA, is centrally involved in the pathogenesis of a whole range of human illnesses and injury states, and atherosclerosis is no exception. However, until recently, its exact role in this pathology was unclear.

Martin Bennett, a leading cardiologist and atherosclerosis expert, set up a series of targeted experiments aimed at understanding the precise mechanism of action of this, otherwise useful, process.

“We decided – explained Bennett – to elucidate the role that VSMCs death has in the timeline of atherosclerosis progression. Using a mouse model that reproduces the human condition, we induced apoptosis of VSMCs only inside the vessel wall, observing, at first, a clear enlargement of the atherosclerotic plaques that almost doubled their size. This is a bad prognostic factor, as the more they grow the more the plaques become brittle”. That was exactly the second observation made: after the initial growth, the fibrous cap that encloses a typical plaque became thinner, whereas the plaque core increased. “All these signals – points out Bennett – could be useful at the bedside, for a real-time monitoring of atherosclerosis progression”. Not enough, after these first events, the researchers confirmed that the whole region involved in the apoptotic process undergoes calcification. This, in turn, prevents the remodelling of a vessel and, when occurs in a patient, it worsens his or her prognosis.

Furthermore, from Bennett’s investigation emerged striking analogies with two degenerative diseases: Marfan’s syndrome and Hutchinson Gilford Progeria. In both these diseases the tissues look much similar to the one analysed by Bennett in the atherosclerotic settings, with areas of calcifications, and the same kind of infiltrating cells.

“Early as they are, these data rise hope that apoptosis could be targeted at different levels, in order to prevent the cascade of reactions so noxious for the health. And that, possibly, it will help to find novel therapies also for other ailments”.

Francesca Noceti | alfa
Further information:
http://www.evgn.org/
http://www.ifom-ieo-campus.it

Further reports about: Plaque VSMC apoptosis atherosclerosis prevent

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>