Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Toward a faster prenatal test for Down syndrome

19.09.2007
Scientists in California are reporting an advance toward rapid testing for pre-natal detection of Down syndrome and other birth defects that involve an abnormal number of chromosomes.

In a study scheduled for the Oct. 1, 2007 issue of ACS’ journal, Analytical Chemistry, Stanford University bioengineering professor and Howard Hughes Medical Institute researcher Stephen R. Quake and his graduate student H. Christina Fan point out that most existing pre-natal tests depend on a technique termed karyotyping. It requires a two-week wait for anxious parents, while cells taken with amniocentesis or chorionic villus sampling are grown in laboratory culture and analyzed.

Laboratory studies with the new method produced accurate results within two hours. The test is a variation of the famed polymerase chain reaction (PCR) — the basis of the genetic engineering revolution — which produces thousands of identical copies of minute samples of DNA.

Using a technique known as the digital polymerase chain reaction, Quake and Fan replicated DNA from two cultures of cells growing in the laboratory. One consisted of a normal human cell line and the other had human cells with the Down variant. The digital PCR process allowed the researchers to count DNA molecules from the samples, substituting for the two-week cell culture process traditionally needed to produce enough DNA for karyotyping. With the precision derived from counting individual DNA molecules, researchers then were able to move ahead without delay and determine which samples had the extra chromosome that indicates Down syndrome.

... more about:
»DNA »Digital »PCR »Quake »Syndrome »technique

The digital PCR was performed in a commercially available microfluidic chip. The samples were loaded onto the chip, and then partitioned into thousands of chambers by microscopic mechanical valves. While PCR was performed, fluorescent material in the compartments containing individual DNA molecules lit up like an array of LEDs, while those without DNA did not glow. The technique enabled researchers to confirm the presence of abnormal chromosomes typical of Down syndrome with great accuracy.

Rapid testing alternatives already exist, but they are either too labor-intensive or not applicable to the whole population. “The technique we present in this paper can overcome these limitations. It is rapid and simple. We estimate that the entire procedure from sample collection to result readout would take only a few hours, substantially reducing the anxiety of the expectant parents,” Quake said.

The test is also potentially cheaper than other available methods and semi-automated, reducing the workload of lab personnel. And since the digital PCR technique is based on commercially available lab equipment, any interested physician could use it.

“We are confident that it will work on clinical samples of amniotic fluid or chorionic villus,” Fran said. The next step is to begin clinical trials to evaluate the sensitivity and specificity of the new test. The authors believe the new test could be available in as little as one year.

In addition, Quake cited the possibility that the method could lead to a blood test for Down syndrome. It would involve capturing fetal cells, which leak through the placenta and circulate in the mother’s blood, and analyzing their DNA for abnormalities with digital PCR. Other research groups are also investigating a digital PCR-based Down syndrome test, he noted.

As a non-invasive test, it would be the safest approach to prenatal diagnosis of Down syndrome, since both amniocentesis and chorionic villus sampling pose risks to the fetus. Quake noted, however, that new techniques to separate the small fraction of fetal DNA in a mother’s bloodstream must be developed before a blood test could be developed and tested.

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org

Further reports about: DNA Digital PCR Quake Syndrome technique

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>