Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Toward a faster prenatal test for Down syndrome

19.09.2007
Scientists in California are reporting an advance toward rapid testing for pre-natal detection of Down syndrome and other birth defects that involve an abnormal number of chromosomes.

In a study scheduled for the Oct. 1, 2007 issue of ACS’ journal, Analytical Chemistry, Stanford University bioengineering professor and Howard Hughes Medical Institute researcher Stephen R. Quake and his graduate student H. Christina Fan point out that most existing pre-natal tests depend on a technique termed karyotyping. It requires a two-week wait for anxious parents, while cells taken with amniocentesis or chorionic villus sampling are grown in laboratory culture and analyzed.

Laboratory studies with the new method produced accurate results within two hours. The test is a variation of the famed polymerase chain reaction (PCR) — the basis of the genetic engineering revolution — which produces thousands of identical copies of minute samples of DNA.

Using a technique known as the digital polymerase chain reaction, Quake and Fan replicated DNA from two cultures of cells growing in the laboratory. One consisted of a normal human cell line and the other had human cells with the Down variant. The digital PCR process allowed the researchers to count DNA molecules from the samples, substituting for the two-week cell culture process traditionally needed to produce enough DNA for karyotyping. With the precision derived from counting individual DNA molecules, researchers then were able to move ahead without delay and determine which samples had the extra chromosome that indicates Down syndrome.

... more about:
»DNA »Digital »PCR »Quake »Syndrome »technique

The digital PCR was performed in a commercially available microfluidic chip. The samples were loaded onto the chip, and then partitioned into thousands of chambers by microscopic mechanical valves. While PCR was performed, fluorescent material in the compartments containing individual DNA molecules lit up like an array of LEDs, while those without DNA did not glow. The technique enabled researchers to confirm the presence of abnormal chromosomes typical of Down syndrome with great accuracy.

Rapid testing alternatives already exist, but they are either too labor-intensive or not applicable to the whole population. “The technique we present in this paper can overcome these limitations. It is rapid and simple. We estimate that the entire procedure from sample collection to result readout would take only a few hours, substantially reducing the anxiety of the expectant parents,” Quake said.

The test is also potentially cheaper than other available methods and semi-automated, reducing the workload of lab personnel. And since the digital PCR technique is based on commercially available lab equipment, any interested physician could use it.

“We are confident that it will work on clinical samples of amniotic fluid or chorionic villus,” Fran said. The next step is to begin clinical trials to evaluate the sensitivity and specificity of the new test. The authors believe the new test could be available in as little as one year.

In addition, Quake cited the possibility that the method could lead to a blood test for Down syndrome. It would involve capturing fetal cells, which leak through the placenta and circulate in the mother’s blood, and analyzing their DNA for abnormalities with digital PCR. Other research groups are also investigating a digital PCR-based Down syndrome test, he noted.

As a non-invasive test, it would be the safest approach to prenatal diagnosis of Down syndrome, since both amniocentesis and chorionic villus sampling pose risks to the fetus. Quake noted, however, that new techniques to separate the small fraction of fetal DNA in a mother’s bloodstream must be developed before a blood test could be developed and tested.

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org

Further reports about: DNA Digital PCR Quake Syndrome technique

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>