Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Swirled to the Left or Right?

19.09.2007
Nanofibers align in stirred liquid

Is the vortex in a stirred liquid swirling clockwise or counterclockwise? A zinc porphyrin dendrimer—a branched molecule with a central zinc atom—can answer this question. As Japanese researchers report in the journal Angewandte Chemie, the optical activity of a solution containing this substance changes rapidly when the direction of stirring is changed.

It is possible that vortexes in the distant past were responsible for breaking the symmetry in nature to give us the “handed” life we see today, which has clear preferences for “left-” or “right-handed” molecular building blocks like sugars and amino acids. Vortexes in liquids clearly twist either one way or the other, as do screws, our hair, or snail shells. They can be related to each other like mirror images or left and right hands. This is called “handedness” (chirality).

Vortexes are very complex structures, containing many regions with currents moving in completely different directions. For example, if a liquid is stirred in a cuvette, a dense circular current forms at the center while a loose spiral-shaped flow is present in the outer regions of the vortex.

... more about:
»Liquid »Solution »Vortex

A research team headed by Takuzo Aida and Akihiko Tsuda has now synthesized a zinc porphyrin dendrimer that makes these individual local currents observable by spectroscopy. The highly branched zinc-containing molecules aggregate in solution to form long nanofibers. If the solution is not stirred, it is not optically active. As soon as it is stirred, it becomes optically active: The stirred solution rotates right- and left-circularly polarized light to different degrees. This difference (circular dichroism), when measured over all wavelengths, results in a characteristic spectrum. If the direction of stirring is changed, the sign of the circular dichroism switches. In addition, the magnitude of the circular dichroism increases with increased stirring.

This phenomenon does not stem, as first thought, from the twisting of individual nanofibers. It is evidently caused by a special macroscopic spatial arrangement of the fibers within the sample cuvette: Like a flag waving in the breeze, the individual fibers are directed by the current. Along the beam of light shining through the cuvette, the different currents within the vortex drive the fibers into a helical arrangement—a structure reminiscent of certain liquid-crystalline phases. When the direction of stirring is changed, the helical structure also changes the direction it twists.

Author: Takuzo Aida, University of Tokyo (Japan), http://macro.chem.t.u-tokyo.ac.jp/Top.html

Title: Spectroscopic Visualization of Vortex Flows Using Dye-Containing Nanofibers

Angewandte Chemie International Edition, doi: 10.1002/anie.200703083

| Angewandte Chemie
Further information:
http://macro.chem.t.u-tokyo.ac.jp/Top.html
http://pressroom.angewandte.org

Further reports about: Liquid Solution Vortex

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>