Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Swirled to the Left or Right?

19.09.2007
Nanofibers align in stirred liquid

Is the vortex in a stirred liquid swirling clockwise or counterclockwise? A zinc porphyrin dendrimer—a branched molecule with a central zinc atom—can answer this question. As Japanese researchers report in the journal Angewandte Chemie, the optical activity of a solution containing this substance changes rapidly when the direction of stirring is changed.

It is possible that vortexes in the distant past were responsible for breaking the symmetry in nature to give us the “handed” life we see today, which has clear preferences for “left-” or “right-handed” molecular building blocks like sugars and amino acids. Vortexes in liquids clearly twist either one way or the other, as do screws, our hair, or snail shells. They can be related to each other like mirror images or left and right hands. This is called “handedness” (chirality).

Vortexes are very complex structures, containing many regions with currents moving in completely different directions. For example, if a liquid is stirred in a cuvette, a dense circular current forms at the center while a loose spiral-shaped flow is present in the outer regions of the vortex.

... more about:
»Liquid »Solution »Vortex

A research team headed by Takuzo Aida and Akihiko Tsuda has now synthesized a zinc porphyrin dendrimer that makes these individual local currents observable by spectroscopy. The highly branched zinc-containing molecules aggregate in solution to form long nanofibers. If the solution is not stirred, it is not optically active. As soon as it is stirred, it becomes optically active: The stirred solution rotates right- and left-circularly polarized light to different degrees. This difference (circular dichroism), when measured over all wavelengths, results in a characteristic spectrum. If the direction of stirring is changed, the sign of the circular dichroism switches. In addition, the magnitude of the circular dichroism increases with increased stirring.

This phenomenon does not stem, as first thought, from the twisting of individual nanofibers. It is evidently caused by a special macroscopic spatial arrangement of the fibers within the sample cuvette: Like a flag waving in the breeze, the individual fibers are directed by the current. Along the beam of light shining through the cuvette, the different currents within the vortex drive the fibers into a helical arrangement—a structure reminiscent of certain liquid-crystalline phases. When the direction of stirring is changed, the helical structure also changes the direction it twists.

Author: Takuzo Aida, University of Tokyo (Japan), http://macro.chem.t.u-tokyo.ac.jp/Top.html

Title: Spectroscopic Visualization of Vortex Flows Using Dye-Containing Nanofibers

Angewandte Chemie International Edition, doi: 10.1002/anie.200703083

| Angewandte Chemie
Further information:
http://macro.chem.t.u-tokyo.ac.jp/Top.html
http://pressroom.angewandte.org

Further reports about: Liquid Solution Vortex

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>