Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists learn structure of enzyme in unusual virus

Biologists have determined the three-dimensional structure of an unusual viral enzyme that is required in the assembly of new viruses.

The Paramecium bursaria chlorella virus infects a green alga called chlorella, transferring its DNA into host cells. Once inside the chlorella, the virus DNA makes an enzyme called glycosyltransferase, which is needed to produce structural proteins that are assembled to create the outer shells, or capsids, for new virus particles.

In contrast, many viruses commandeer the genes of host cells to make enzymes and proteins, said Ying Zhang, a postdoctoral researcher in the laboratory of Michael Rossmann, Purdue University's Hanley Distinguished Professor of Biological Sciences.

The three-dimensional structure of the complete infectious virus had been determined earlier by the same group of researchers and their colleagues. Now they have found the structure of a specific type of glycosyltransferase and also its complex with a molecule called UDP-glucose, which stands for uridine-5-diphosphate-glucose, along with positively charged manganese ions. The manganese ions are critical because they coordinate the binding of the UDP-glucose to the enzyme.

... more about:
»Capsid »Rossmann »Viral »Zhang »glycosyltransferase

The findings are detailed in a research paper appearing in this month's issue of the journal Structure. The paper was written by Zhang; Purdue postdoctoral researcher Ye Xiang; James Van Etten, the William Allington Distinguished Professor of Plant Pathology at the University of Nebraska; and Rossmann.

Learning the fundamental mechanisms for how this glycosyltransferase works may later enable scientists to develop drugs that inhibit certain viral infections, Zhang said.

The glycosyltransferase apparently breaks a chemical bond between UDP and the glucose. The glucose is then attached to the roughly 5,000 copies of a protein that assembles to form the viral capsid that surrounds and protects the virus's DNA genome.

"The glucose may be helping to correctly fold the protein while it is being assembled into the capsid," Rossmann said.

In addition, the glucose on the capsid also may be involved in the initiation of the viral infection, he said.

The researchers used X-ray crystallography to determine the structure of the glycosyltransferase enzyme and earlier had used cryoelectron microscopy to determine the three-dimensional structure of the virus.

The work has been funded by the National Institutes of Health and the National Center for Research Resources.

Writer: Emil Venere, (765) 494-4709,
Sources: Michael Rossmann, (765) 494-4911,
Ying Zhang,
Purdue News Service: (765) 494-2096;

Emil Venere | EurekAlert!
Further information:

Further reports about: Capsid Rossmann Viral Zhang glycosyltransferase

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>