Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists learn structure of enzyme in unusual virus

19.09.2007
Biologists have determined the three-dimensional structure of an unusual viral enzyme that is required in the assembly of new viruses.

The Paramecium bursaria chlorella virus infects a green alga called chlorella, transferring its DNA into host cells. Once inside the chlorella, the virus DNA makes an enzyme called glycosyltransferase, which is needed to produce structural proteins that are assembled to create the outer shells, or capsids, for new virus particles.

In contrast, many viruses commandeer the genes of host cells to make enzymes and proteins, said Ying Zhang, a postdoctoral researcher in the laboratory of Michael Rossmann, Purdue University's Hanley Distinguished Professor of Biological Sciences.

The three-dimensional structure of the complete infectious virus had been determined earlier by the same group of researchers and their colleagues. Now they have found the structure of a specific type of glycosyltransferase and also its complex with a molecule called UDP-glucose, which stands for uridine-5-diphosphate-glucose, along with positively charged manganese ions. The manganese ions are critical because they coordinate the binding of the UDP-glucose to the enzyme.

... more about:
»Capsid »Rossmann »Viral »Zhang »glycosyltransferase

The findings are detailed in a research paper appearing in this month's issue of the journal Structure. The paper was written by Zhang; Purdue postdoctoral researcher Ye Xiang; James Van Etten, the William Allington Distinguished Professor of Plant Pathology at the University of Nebraska; and Rossmann.

Learning the fundamental mechanisms for how this glycosyltransferase works may later enable scientists to develop drugs that inhibit certain viral infections, Zhang said.

The glycosyltransferase apparently breaks a chemical bond between UDP and the glucose. The glucose is then attached to the roughly 5,000 copies of a protein that assembles to form the viral capsid that surrounds and protects the virus's DNA genome.

"The glucose may be helping to correctly fold the protein while it is being assembled into the capsid," Rossmann said.

In addition, the glucose on the capsid also may be involved in the initiation of the viral infection, he said.

The researchers used X-ray crystallography to determine the structure of the glycosyltransferase enzyme and earlier had used cryoelectron microscopy to determine the three-dimensional structure of the virus.

The work has been funded by the National Institutes of Health and the National Center for Research Resources.

Writer: Emil Venere, (765) 494-4709, venere@purdue.edu
Sources: Michael Rossmann, (765) 494-4911, mgr@indiana.bio.purdue.edu
Ying Zhang, yzhang1@bilbo.bio.purdue.edu
Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Emil Venere | EurekAlert!
Further information:
http://www.purdue.edu

Further reports about: Capsid Rossmann Viral Zhang glycosyltransferase

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>