Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New microsensor measures volatile organic compounds in water and air on-site

Researchers at the Georgia Institute of Technology have developed a miniature sensor that uses polymer membranes deposited on a tiny silicon disk to measure pollutants present in aqueous or gaseous environments. An array of these sensors with different surface coatings could be used during field-testing to rapidly detect many different chemicals.

Since this new sensor allows water and air samples to be analyzed in the field, it is an improvement over classical techniques that require samples be carried back to the laboratory for analysis. This research, funded by the National Science Foundation, was presented on August 20 at the American Chemical Society’s 234th National Meeting.

The heart of the disk-shaped sensor is a microbalance that measures the mass of pollutant molecules.

“When pollutant chemicals get adsorbed to the surface of the sensor, a frequency change of the vibrating microbalance provides a measure of the associated mass change,” said Oliver Brand, associate professor in Georgia Tech’s School of Electrical and Computer Engineering.

Cantilever-type balances, which move up and down like a diving board, are common when measuring the amount of a chemical in the gas phase. However, the mechanical vibrations of the balance used to detect the mass changes are damped in liquids, causing the sensitivity of the balance to decrease. Thus, Brand and graduate students Jae Hyeong Seo, Stuart Truax and Kemal Safak Demirci searched for structures whose vibrations were less affected by the surrounding medium.

The researchers chose a silicon disk platform for the sensor. The disk shears back and forth around its center with a characteristic resonance frequency between 300 and 1,000 kHz, depending on its geometry. With proper actuation and sensing elements integrated onto the microstructures, Brand can electrically excite the resonator and sense these rotational oscillations.

Since each sensor has a diameter of approximately 200-300 microns, or the average diameter of a human hair, an array of a dozen sensors is only a few millimeters in size.

To determine how to selectively detect multiple pollutants in the same sample, Brand began collaborating with Boris Mizaikoff, an associate professor in Georgia Tech’s School of Chemistry and Biochemistry and director of its Applied Sensors Laboratory.

Mizaikoff and graduate students Gary Dobbs and Yuliya Luzinova selected commercially available hydrophobic polymers and deposited them as thin film membranes on the sensor surface. They continue to investigate innovative ways to consistently deposit the polymers at the disk surface, while ensuring sufficient adhesion for long-term field applications.

“By modifying the silicon transducer surface with different polymer membranes, each sensor becomes selective for groups of chemicals,” explained Mizaikoff.

An array of these sensors, each sensor with a different chemically modified transducer surface, can sense different pollutants in a variety of environments ranging from industrial to environmental and biomedical monitoring applications.

Brand and Mizaikoff aim to detect volatile organic compounds (VOCs) in aqueous and gaseous environments. VOCs are pollutants of high prevalence in the air and surface and ground waters. They are emitted from products such as paints, cleaning supplies, pesticides, building materials and furnishings, office equipment and craft materials.

A common VOC is benzene, with a maximum contaminant level set by the Environmental Protection Agency (EPA) at five micrograms per liter in drinking water. Many VOCs are present at similar very low concentrations, so effective sensors must accurately measure and discriminate very small mass changes.

“We’ve been able to measure concentrations among the lowest levels that have been achieved using this type of resonant microsensor,” noted Brand. “While we have not achieved the required sensitivity yet, we are constantly making improvements.”

Brand and Mizaikoff have tested their sensor device in the laboratory by pumping water with specific pollutant concentrations through a simple flow cell device attached to the sensor.

A typical test begins by flowing a water sample containing a known amount of pollutant over a sensor coated with a polymer membrane. When the sample flows through the cell, the mass of the microstructure increases, causing its characteristic vibration frequency, or resonance frequency, to decrease. By monitoring this resonance frequency over time, Brand and Mizaikoff can detect the amount of aromatic hydrocarbons such as benzene present in water.

The researchers plan to run field trials to investigate the use of this new microsensor in aqueous and gaseous environments for rapid on-site screening of multiple pollutants.

“With benzene and other VOCs high on the EPA priority pollutant list, it would be a major advantage to get a rapid reading of VOC concentrations directly in the field,” said Mizaikoff.

John Toon | EurekAlert!
Further information:

Further reports about: Frequency Mizaikoff Polymer VOC concentrations microsensor pollutant

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>