Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New cell death pathway involved in sperm development

Heavy and bulky sperm would not be good swimmers. To trim down, sperm rely on cell death proteins called caspases, which facilitate the removal of unwanted cellular material and radically remodel these cells into their sleek, light shape.

New research from scientists at the Howard Hughes Medical Institute and Rockefeller University has now uncovered a new pathway that regulates these killer proteins, yielding new knowledge about caspase function as well as insights into the causes of human infertility. The findings are reported in the

Cell death caspases, when activated, were thought to condemn a cell to certain death. But a few years ago Hermann Steller, head of the Laboratory of Cancer and Apoptosis Biology, and his colleagues discovered that caspases also function without entirely killing cells; instead, they are used to shape cells by dismantling unwanted bulk. “This process is very similar to apoptosis, or cell suicide,” explains Steller, who is Strang Professor at Rockefeller and an investigator at HHMI, “but in this case cells live.” And in Drosophila, when this cell death-like program goes awry, males become sterile.

Though quite a bit has been learned about how caspases are activated, very little is known about how unwanted caspase activity is restricted so that healthy, productive cells aren’t mistakenly target for death. So Steller and his colleagues wanted to figure out how caspases, which are expressed in all cells, are activated at the right time and at the right place; and in this case, how they do not kill off a cell entirely.

... more about:
»Drosophila »Steller »Ubiquitin »caspase »sperm »sterile

The researchers screened more than 1,000 sterile male fruitflies, looking for cellular differences between sterile flies and fertile ones. They then mapped these differences back to the genes to identify mutations along the Drosophila genome that made these fruitflies sterile. This process eventually pointed them to three distinct genes that encode different protein components of a complex called Cullin-3 ubiquitin ligase.

Cullins are members of the E3 ubiquitin ligase family, which label other proteins with ubiquitin, a molecule that marks them for degradation. It turns out that Cullin-3, in conjunction with two other proteins, activates caspases by degrading a caspase inhibitor. This, in turn, initiates a cell death-like program at the right time and at the right place — in the developing testes of Drosophila — and gets rid of unwanted cytoplasm and organelles. Before this study, only IAPs, another class of E3 ubiquitin ligases, had been identified as caspase regulators. Now, Steller and his group have found a new major player that regulates these killer proteins.

One of the proteins that form the Cullin-based complex in Drosophila has also been linked to male infertility in mice and humans. In mice, a mutation in the gene that encodes a protein called Klh110 causes male sterility. In humans, male infertility has been linked to this gene as well, although it is still not known whether this is due to the inability of Cullins to activate caspases and promote sperm differentiation.

The Steller lab initially focused on the role of Cullins during sperm development, but there is already data indicating that they also function to regulate caspases in somatic cells. It appears that cells use several different mechanisms simultaneously to protect themselves against unwanted caspase activity and death. This information provides new opportunities to develop drugs that can alter cell death for therapeutic purposes, either for cellular protection or cell killing — processes that range from neurodegenerative disease to cancer.

“Our findings provide a new framework to understand how apoptotic proteins are regulated for cellular remodeling.” says Steller. “And now, by having a more comprehensive picture of these different pathways and how they come together, we are prepared to look much more broadly at different cell death paradigms.”

Thania Benios | EurekAlert!
Further information:

Further reports about: Drosophila Steller Ubiquitin caspase sperm sterile

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>