Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New cell death pathway involved in sperm development

19.09.2007
Heavy and bulky sperm would not be good swimmers. To trim down, sperm rely on cell death proteins called caspases, which facilitate the removal of unwanted cellular material and radically remodel these cells into their sleek, light shape.

New research from scientists at the Howard Hughes Medical Institute and Rockefeller University has now uncovered a new pathway that regulates these killer proteins, yielding new knowledge about caspase function as well as insights into the causes of human infertility. The findings are reported in the

Cell death caspases, when activated, were thought to condemn a cell to certain death. But a few years ago Hermann Steller, head of the Laboratory of Cancer and Apoptosis Biology, and his colleagues discovered that caspases also function without entirely killing cells; instead, they are used to shape cells by dismantling unwanted bulk. “This process is very similar to apoptosis, or cell suicide,” explains Steller, who is Strang Professor at Rockefeller and an investigator at HHMI, “but in this case cells live.” And in Drosophila, when this cell death-like program goes awry, males become sterile.

Though quite a bit has been learned about how caspases are activated, very little is known about how unwanted caspase activity is restricted so that healthy, productive cells aren’t mistakenly target for death. So Steller and his colleagues wanted to figure out how caspases, which are expressed in all cells, are activated at the right time and at the right place; and in this case, how they do not kill off a cell entirely.

... more about:
»Drosophila »Steller »Ubiquitin »caspase »sperm »sterile

The researchers screened more than 1,000 sterile male fruitflies, looking for cellular differences between sterile flies and fertile ones. They then mapped these differences back to the genes to identify mutations along the Drosophila genome that made these fruitflies sterile. This process eventually pointed them to three distinct genes that encode different protein components of a complex called Cullin-3 ubiquitin ligase.

Cullins are members of the E3 ubiquitin ligase family, which label other proteins with ubiquitin, a molecule that marks them for degradation. It turns out that Cullin-3, in conjunction with two other proteins, activates caspases by degrading a caspase inhibitor. This, in turn, initiates a cell death-like program at the right time and at the right place — in the developing testes of Drosophila — and gets rid of unwanted cytoplasm and organelles. Before this study, only IAPs, another class of E3 ubiquitin ligases, had been identified as caspase regulators. Now, Steller and his group have found a new major player that regulates these killer proteins.

One of the proteins that form the Cullin-based complex in Drosophila has also been linked to male infertility in mice and humans. In mice, a mutation in the gene that encodes a protein called Klh110 causes male sterility. In humans, male infertility has been linked to this gene as well, although it is still not known whether this is due to the inability of Cullins to activate caspases and promote sperm differentiation.

The Steller lab initially focused on the role of Cullins during sperm development, but there is already data indicating that they also function to regulate caspases in somatic cells. It appears that cells use several different mechanisms simultaneously to protect themselves against unwanted caspase activity and death. This information provides new opportunities to develop drugs that can alter cell death for therapeutic purposes, either for cellular protection or cell killing — processes that range from neurodegenerative disease to cancer.

“Our findings provide a new framework to understand how apoptotic proteins are regulated for cellular remodeling.” says Steller. “And now, by having a more comprehensive picture of these different pathways and how they come together, we are prepared to look much more broadly at different cell death paradigms.”

Thania Benios | EurekAlert!
Further information:
http://www.rockefeller.edu

Further reports about: Drosophila Steller Ubiquitin caspase sperm sterile

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>