Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists identify fundamental brain defect, probable drug target in fragile X syndrome

Scientists have discovered how the gene mutation responsible for fragile X syndrome--the most common inherited form of mental retardation--alters the way brain cells communicate. In neurons cultured from laboratory rats, the scientists also were able to reverse the effects of the mutation using a drug targeted to the specific site in an upstream pathway of the defect. The finding could lead to the development of human therapies for this previously untreatable condition.

The research was led by Stephen T. Warren, PhD, Timmie professor and chair of human genetics in Emory University School of Medicine, and Gary J. Bassell, PhD, Emory professor of cell biology. It will be reported in the Proceedings of the National Academy of Sciences (PNAS) the week of Sept. 17. Lead author is Emory genetics postdoctoral fellow Mika Nakamoto.

"We have now explained the fundamental defect in the brain in fragile X syndrome and, most importantly, found that we can correct this problem in the laboratory," says Dr. Warren. "This is quite exciting, progressing from the identification of the gene in 1991 to now believing we will be able to treat a previously untreatable condition. Our next steps will be to continue screening and identifying the best drugs to try and correct the deficiencies that result from fragile X syndrome."

Fragile X syndrome is caused by a mutation in the FMR1 gene on the X chromosome. A region of the mutated FMR1 gene repeats a trinucleotide sequence of DNA bases--CGG--between 200 and 1,000 times, rather than the normal 6 to 55 repeats in normal individuals. The abnormal trinucleotide repeats cause the absence of the FMR protein normally produced by the gene.

... more about:
»AMPAR »Drug »FMRP »Syndrome »Target »discovered »mGluR5 »receptor

Dr. Warren and his colleagues led an international team that discovered the FMR1 gene in 1991. They later characterized the FMR protein (FMRP) and developed diagnostic tests for fragile X syndrome. Ever since, their research has focused on identifying the specific consequences of FMRP deficiency in the brain and finding targets for drug therapy.

Previously, Dr. Warren, working with scientists at Brown University, discovered that the absence of FMRP in the mouse model of fragile X syndrome leads to an abnormality in synaptic strength, or the degree by which neurons communicate, that suggested an abnormality of AMPAR receptors on the surface of neurons. These receptors are necessary for neurons to connect with each other at synapses, allowing the communication that leads to learning and memory. Drs. Warren and Bassell discovered that in fragile X syndrome, AMPAR receptors move in and out of the surface neuronal cells more frequently and destabilize the synaptic connections. The Emory scientists and others believe this is the ultimate defect in fragile X syndrome.

Using cultured neurons in the laboratory, manipulated to model fragile X syndrome, the Emory scientists were able to target the mGluR5 receptor with an mGluR5 antagonist--MPEP. Since the mGluR5 receptor is upstream of FMRP and has an opposing influence over the neuron, tempering mGluR5 stimulation should normalize the consequence of the loss of FMRP. Indeed, the Emory scientists found the targeted MPEP therapy rescued the abnormal AMPAR receptor movement on the surface of the FMRP-deficient neurons.

"By adding a drug that antagonizes the mGluR5 receptor and signal, we were able to normalize the AMPAR receptor trafficking, and presumably allow the neurons to make appropriate synaptic connections," Dr. Warren says. "This gives us great hope that we will be able to develop treatments for patients with fragile X syndrome."

Holly Korschun | EurekAlert!
Further information:

Further reports about: AMPAR Drug FMRP Syndrome Target discovered mGluR5 receptor

More articles from Life Sciences:

nachricht ‘Farming’ bacteria to boost growth in the oceans
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Calcium Induces Chronic Lung Infections
24.10.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>