Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genes in rheumatoid arthritis

18.09.2007
Strong evidence that region on chromosome 9 is associated with rheumatoid arthritis

A paper published this week in the open access journal PLoS Medicine provides strong evidence that one specific part of the genome is associated with rheumatoid arthritis. Rene Toes and colleagues from Leiden University Medical Center, the Karolinska Institute, and Celera studied four groups of patients and matched controls.

They found a consistent association with one specific region of the genome -- a region on chromosome 9 that includes the two genes, complement component 5 (C5) of the complement system (a primitive system within the body that is involved in the defense against foreign molecules) and a gene involved in the inflammatory response, TNF receptor-associated factor 1(TRAF1) .

Rheumatoid arthritis is a very common chronic illness that affects around 1% of people in developed countries. It is caused by an abnormal immune reaction to various tissues within the body. As well as affecting joints and causing an inflammatory arthritis, it can also affect many other organs of the body. An association has been shown previously in humans with the part of the genome that contains the human leukocyte antigens (HLAs), which are involved in the immune response. In addition, previous work in mice that have a disease similar to human rheumatoid arthritis has identified a number of possible candidate genes including C5.

The researchers took 40 genetic markers, single-nucleotide polymorphisms (SNPs), from across the region that included the C5 and TRAF1 genes. They compared which of the alternate forms of the SNPs were present in 290 patients with rheumatoid arthritis and 254 unaffected participants of Dutch origin. They then repeated the study in three other groups of patients and controls of Dutch, Swedish, and US origin. They found a consistent association with rheumatoid arthritis of one region of 65 kilobases that included one end of the C5 gene as well as the TRAF1 gene and then refined the area of interest to a piece marked by one particular SNP that lay between the genes. They went on to show that the genetic region in which these genes are located may be involved in the binding of a protein that modifies the transcription of genes. Furthermore, they showed that one of the alternate versions of the marker in this region was associated with more aggressive disease.

This study adds to accumulating evidence that this region of the genome is associated with rheumatoid arthritis. The next steps will be to identify the precise genetic change involved.

Citation: Kurreeman FAS, Padyukov L, Marques RB, Schrodi SJ, Seddighzadeh M, et al. (2007) A candidate gene approach identifies the TRAF1/C5 region as a risk factor for rheumatoid arthritis. PLoS Med

4(9): e278. doi:10.1371/journal.pmed.0040278

Andrew Hyde | alfa
Further information:
http://www.plosmedicine.org
http://www.plos.org

Further reports about: Arthritis Rheumatoid SNP rheumatoid arthritis

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>