Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genes in rheumatoid arthritis

18.09.2007
Strong evidence that region on chromosome 9 is associated with rheumatoid arthritis

A paper published this week in the open access journal PLoS Medicine provides strong evidence that one specific part of the genome is associated with rheumatoid arthritis. Rene Toes and colleagues from Leiden University Medical Center, the Karolinska Institute, and Celera studied four groups of patients and matched controls.

They found a consistent association with one specific region of the genome -- a region on chromosome 9 that includes the two genes, complement component 5 (C5) of the complement system (a primitive system within the body that is involved in the defense against foreign molecules) and a gene involved in the inflammatory response, TNF receptor-associated factor 1(TRAF1) .

Rheumatoid arthritis is a very common chronic illness that affects around 1% of people in developed countries. It is caused by an abnormal immune reaction to various tissues within the body. As well as affecting joints and causing an inflammatory arthritis, it can also affect many other organs of the body. An association has been shown previously in humans with the part of the genome that contains the human leukocyte antigens (HLAs), which are involved in the immune response. In addition, previous work in mice that have a disease similar to human rheumatoid arthritis has identified a number of possible candidate genes including C5.

The researchers took 40 genetic markers, single-nucleotide polymorphisms (SNPs), from across the region that included the C5 and TRAF1 genes. They compared which of the alternate forms of the SNPs were present in 290 patients with rheumatoid arthritis and 254 unaffected participants of Dutch origin. They then repeated the study in three other groups of patients and controls of Dutch, Swedish, and US origin. They found a consistent association with rheumatoid arthritis of one region of 65 kilobases that included one end of the C5 gene as well as the TRAF1 gene and then refined the area of interest to a piece marked by one particular SNP that lay between the genes. They went on to show that the genetic region in which these genes are located may be involved in the binding of a protein that modifies the transcription of genes. Furthermore, they showed that one of the alternate versions of the marker in this region was associated with more aggressive disease.

This study adds to accumulating evidence that this region of the genome is associated with rheumatoid arthritis. The next steps will be to identify the precise genetic change involved.

Citation: Kurreeman FAS, Padyukov L, Marques RB, Schrodi SJ, Seddighzadeh M, et al. (2007) A candidate gene approach identifies the TRAF1/C5 region as a risk factor for rheumatoid arthritis. PLoS Med

4(9): e278. doi:10.1371/journal.pmed.0040278

Andrew Hyde | alfa
Further information:
http://www.plosmedicine.org
http://www.plos.org

Further reports about: Arthritis Rheumatoid SNP rheumatoid arthritis

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>