Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genes in rheumatoid arthritis

18.09.2007
Strong evidence that region on chromosome 9 is associated with rheumatoid arthritis

A paper published this week in the open access journal PLoS Medicine provides strong evidence that one specific part of the genome is associated with rheumatoid arthritis. Rene Toes and colleagues from Leiden University Medical Center, the Karolinska Institute, and Celera studied four groups of patients and matched controls.

They found a consistent association with one specific region of the genome -- a region on chromosome 9 that includes the two genes, complement component 5 (C5) of the complement system (a primitive system within the body that is involved in the defense against foreign molecules) and a gene involved in the inflammatory response, TNF receptor-associated factor 1(TRAF1) .

Rheumatoid arthritis is a very common chronic illness that affects around 1% of people in developed countries. It is caused by an abnormal immune reaction to various tissues within the body. As well as affecting joints and causing an inflammatory arthritis, it can also affect many other organs of the body. An association has been shown previously in humans with the part of the genome that contains the human leukocyte antigens (HLAs), which are involved in the immune response. In addition, previous work in mice that have a disease similar to human rheumatoid arthritis has identified a number of possible candidate genes including C5.

The researchers took 40 genetic markers, single-nucleotide polymorphisms (SNPs), from across the region that included the C5 and TRAF1 genes. They compared which of the alternate forms of the SNPs were present in 290 patients with rheumatoid arthritis and 254 unaffected participants of Dutch origin. They then repeated the study in three other groups of patients and controls of Dutch, Swedish, and US origin. They found a consistent association with rheumatoid arthritis of one region of 65 kilobases that included one end of the C5 gene as well as the TRAF1 gene and then refined the area of interest to a piece marked by one particular SNP that lay between the genes. They went on to show that the genetic region in which these genes are located may be involved in the binding of a protein that modifies the transcription of genes. Furthermore, they showed that one of the alternate versions of the marker in this region was associated with more aggressive disease.

This study adds to accumulating evidence that this region of the genome is associated with rheumatoid arthritis. The next steps will be to identify the precise genetic change involved.

Citation: Kurreeman FAS, Padyukov L, Marques RB, Schrodi SJ, Seddighzadeh M, et al. (2007) A candidate gene approach identifies the TRAF1/C5 region as a risk factor for rheumatoid arthritis. PLoS Med

4(9): e278. doi:10.1371/journal.pmed.0040278

Andrew Hyde | alfa
Further information:
http://www.plosmedicine.org
http://www.plos.org

Further reports about: Arthritis Rheumatoid SNP rheumatoid arthritis

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>