Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sporty Sperm: A Stiff One Gets the Job Done More Quickly

10.04.2002


A scientist who studies the phsyics of sperm "as a hobby" is challenging the current understanding of how sperm swim towards an egg. At the Society for Experimental Biology conference today Dr Christopher Lowe will present the results of his modelling of a sperm`s tail, suggesting we may need to re-think our assumptions of how sperm move through fluid.



Experimental studies of sperm have generated a fairly well established database of parameters on sperm movement. The frequency and wavelength of the tail movement is estimated at around 50 hertz down the tail. The low speed at which sperm swim is well known - perhaps suprisingly low given the urgency of the mission, but understandable because of the sheer force of the fluid it is moving in. "If you were a sperm it would be the equivalent of swimming in a liquid a thousand million times more viscous than air. There is not a substance known to man that is that viscous - even swimming in a pool of thick syrup would be easy going compared to the Olympic feats performed by sperm," says Dr Lowe.

The fluids in which sperm swim are also well-characterised. Using both the sperm and fluid parameters Dr Lowe constructed a computer model which accurately recreated the shape and movement of the sperm`s tail as it swims towards the egg. The simulation also correctly reproduced the swimming speed. But to Dr Lowe`s surprise, he discovered a discrepancy between the computer model and the established theory, related to how stiff the sperm`s tail needs to be to counteract the resistance or drag of the surrounding fluid. "Either the tail is significantly stiffer when the sperm is swimming than previous experiments suggest, or the sperm is doing something very clever indeed to overcome the sticky forces exerted on it by the surrounding fluid. On the grounds that sperm, being on a kamikaze mission, are unlikely to be over-endowed in the brains department, I prefer the former explanation," says Dr Lowe. He suggests the discrepancy arises because many of the previous studies have been performed on sperm parts or on dead sperm. His findings are wholly based on the simulation of a live sperm.

Jenny Gimpel | alphagalileo

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>