Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Going Ballistic: Soft Structures Could Spell The End For Slow Shrimps

10.04.2002


Many animals are able to rapidly extend their tongues to catch prey. In fact, the chameleon extends its tongue at an acceleration rate of 500 metres per second square - generating 5 times the G force experienced by an F-16 fighter during its most demanding maneouvre! New research presented at the Society for Experimental Biology conference in Swansea today has shed light on exactly how these remarkable feats are achieved.



Dr Johan van Leeuwen of Wageningen University, the Netherlands, suggests that these `ballistic movements` are possible due to nature`s remarkable `soft body mechanics`. In research which has studied the bullet-like extension of squid tentacles and snake and chameleon tongues, it has become clear that such movements are possible due to the interaction of muscle fibres and fluid pockets associated with them - the principle constituents of the tongue. Muscle fibres are arranged in a criss-cross pattern, extending up and down and side to side. Co-contraction of these fibres - squeezing the tongue to make it thinner and narrower - pressurises the fluid pockets of the tongue, forcing them to expand rapidly forwards extending the tongue or tentacle. Using high speed filming and mathematical techniques Dr Leeuwen has developed a computer model which effectively predicts the projected pathway of tongues and tentacles.

The actual construction of these muscle fibres are very different from our own. At a molecular level, the human tongue musculature consists of a series of actin and myosin filaments which slide over one another to shorten their overall length and thus contract the muscle. In humans, these fibres are long which enables a great number of bonds to form between the actin and myosin filaments - this results in a very strong system. In creatures capable of ballistic tongue movements, the fibres are shorter. Thus there are more `sliding possibilities` and less bonds between the two filament types. As a result, strength is reduced but speed is greatly increased. These propertries allow the squid`s prey catching tentacles to increase in length by around 80% in just 20-30 milliseconds - bad news if you`re a shrimp!


These `soft body mechanics` are in direct contrast to our own robotic designs. Man-made machines are created using rigid limbs and joints whilst many natural systems rely on pressurised fluid alone for support. Dr van Leeuwen suggests that this property allows the tongue to be "controllable, lightweight and flexible."

"Nature has found solutions to produce intricate `robotic` arms which are made only of soft tissue. The perpendicular arrangement of fibres in the tongue is a clever system. When the tongue muscles contract, you get an enormous extension, allowing predators to capture fast moving prey. "

Jenny Gimpel | alphagalileo

More articles from Life Sciences:

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht Identified the component that allows a lethal bacteria to spread resistance to antibiotics
27.07.2017 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>