Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Going Ballistic: Soft Structures Could Spell The End For Slow Shrimps

10.04.2002


Many animals are able to rapidly extend their tongues to catch prey. In fact, the chameleon extends its tongue at an acceleration rate of 500 metres per second square - generating 5 times the G force experienced by an F-16 fighter during its most demanding maneouvre! New research presented at the Society for Experimental Biology conference in Swansea today has shed light on exactly how these remarkable feats are achieved.



Dr Johan van Leeuwen of Wageningen University, the Netherlands, suggests that these `ballistic movements` are possible due to nature`s remarkable `soft body mechanics`. In research which has studied the bullet-like extension of squid tentacles and snake and chameleon tongues, it has become clear that such movements are possible due to the interaction of muscle fibres and fluid pockets associated with them - the principle constituents of the tongue. Muscle fibres are arranged in a criss-cross pattern, extending up and down and side to side. Co-contraction of these fibres - squeezing the tongue to make it thinner and narrower - pressurises the fluid pockets of the tongue, forcing them to expand rapidly forwards extending the tongue or tentacle. Using high speed filming and mathematical techniques Dr Leeuwen has developed a computer model which effectively predicts the projected pathway of tongues and tentacles.

The actual construction of these muscle fibres are very different from our own. At a molecular level, the human tongue musculature consists of a series of actin and myosin filaments which slide over one another to shorten their overall length and thus contract the muscle. In humans, these fibres are long which enables a great number of bonds to form between the actin and myosin filaments - this results in a very strong system. In creatures capable of ballistic tongue movements, the fibres are shorter. Thus there are more `sliding possibilities` and less bonds between the two filament types. As a result, strength is reduced but speed is greatly increased. These propertries allow the squid`s prey catching tentacles to increase in length by around 80% in just 20-30 milliseconds - bad news if you`re a shrimp!


These `soft body mechanics` are in direct contrast to our own robotic designs. Man-made machines are created using rigid limbs and joints whilst many natural systems rely on pressurised fluid alone for support. Dr van Leeuwen suggests that this property allows the tongue to be "controllable, lightweight and flexible."

"Nature has found solutions to produce intricate `robotic` arms which are made only of soft tissue. The perpendicular arrangement of fibres in the tongue is a clever system. When the tongue muscles contract, you get an enormous extension, allowing predators to capture fast moving prey. "

Jenny Gimpel | alphagalileo

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>