Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ancient whale fall from California's Año Nuevo Island one of youngest, most complete known

17.09.2007
11 million to 15 million-year-old fossil whale puts limit on origin of oily, buoyant bones in whales

A fossilized whale skeleton excavated 20 years ago amid the stench and noise of a seabird and elephant seal rookery on California's Año Nuevo Island turns out to be the youngest example on the Pacific coast of a fossil whale fall and the first in California, according to University of California, Berkeley, paleontologists.

Whale falls, first recognized in the 1980s, are whale carcasses that fall to the deep-ocean floor where, like an oasis in the desert, they attract a specialized group of clams, crabs and worms that feed for up to decades on the oil-rich bones and tissues.

Some scientists think these random, deep-ocean oases are stepping stones for organisms moving from one ocean floor environment to another - whether a hot vent, a cold seep or a whale carcass - in search of sustenance from energy-rich chemicals.

... more about:
»Año »Bones »Haasl »Island »Nuevo »Pyenson »carcass »clam »known »mollusk

"The fossil whale fall shows that these deep-sea communities didn't need especially large whales as a source of nutrients - in fact, the fossil whale from Año Nuevo Island was no longer than a VW bug," said Nick Pyenson, a graduate student in UC Berkeley's Department of Integrative Biology.

Pyenson and museum scientist David M. Haasl, both of UC Berkeley's Museum of Paleontology, published their findings in this week's online edition of the journal Biology Letters.

The Año Nuevo skeleton, discovered in 1987 by then-UC Santa Cruz graduate student Brian Fadely and excavated by Graham Worthy and local fossil expert Frank Perry, was considered a rather small and unremarkable fossil whale - at 11 feet, it was less than half the size of today's smallest baleen whales. The bones, including skull, spine and ribs, were displayed at Long Marine Laboratory in Santa Cruz until the lab donated the partially articulated skeleton to the Museum of Paleontology in 2005.

As Pyenson prepared it for the museum's collection, however, he noticed small clams in the nooks and crannies of the skull. He found 21 clams in all, each less than a centimeter in length, or two-fifths of an inch, plus one snail. Most of these organisms were on the skull, but some were nestled in the vertebrae. Haasl, a mollusk expert, thought the clams might be similar to those that cluster around whale falls today and that are able to extract energy from chemicals in bones with the help of specialized symbiotic bacteria. At whale fall depths of more than 1,000 meters, there is no light for photosynthesis.

Based on the shape of the fossil clam shells attached to the whale skeleton, Pyenson and Haasl determined that they belong to the same group of mollusks whose living relatives are chemosynthetic, confirming their initial hypothesis that this was a whale fall. A visit by Pyenson and Haasl to Año Nuevo Island in January 2007 showed that the whale came from 15 million-year-old sediments, the Monterey Formation, making the Año Nuevo find much younger than most fossil whale falls discovered around the globe, the oldest of which date from 40 million years ago, Pyenson said.

Whale falls were unknown to science until 1989, when the first example of a deep-sea community living on recently deceased whale carcasses was reported from southern California.

"The ocean floor is pretty much a desert until you get a whole whale carcass sinking to the bottom," Pyenson said. "We don't know how these creatures know to colonize it. Are they ever-present on the sea floor waiting for an animal to fall" But when the whale carcass hits, it forms this island refuge of high nutrient levels that can sustain an undersea community, some scientists calculate, for decades."

Over the past 18 years, more whale falls have been found around the world, and paleontologists have found examples in the fossil record as well. Most fossil examples, however, consist of isolated bones adjacent to deep-sea mollusks, Pyenson said. Little is known about the size or identity of the whale host.

In contrast, the Año Nuevo skeleton was unusually complete and hosted multiple mollusks. It also was small, which suggested to Pyenson that these specialized deep-sea communities didn't need large whale carcasses to evolve. Previous researchers had hypothesized that whale-fall communities evolved with the origin of large baleen whales, such as blue whales, and oil-rich bones. Pyenson and Haasl proposed instead that the oil content of the whale's bones was the more crucial factor.

"What we have are relatives of modern chemosynthetic clams associated directly with the skeleton of a tiny, tiny whale, smaller than any other known from modern whale falls," Pyenson said. "That tells us that you don't need very large whales to sustain a whale fall, but what you probably need is a really oily skeleton."

Because they are more buoyant, oil-rich bones are likely one adaptation to allow deep diving, Pyenson said. The Año Nuevo whale fall find puts a lower limit of 11 million years on the origin of oily bones in whales, he added.

Pyenson and Haasl are currently working with scientists at the Monterey Bay Aquarium Research Institute who routinely study recent whale falls in Monterey Bay. They hope to do "side-by-side comparisons of the fossil and modern whale-fall clam shells" to better characterize those from the fossil whale fall.

Robert Sanders | EurekAlert!
Further information:
http://www.berkeley.edu

Further reports about: Año Bones Haasl Island Nuevo Pyenson carcass clam known mollusk

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>