Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists reveal DNA-enzyme interaction with first ever real time footage

17.09.2007
For the first time scientists have been able to film, in real time, the nanoscale interaction of an enzyme and a DNA strand from an attacking virus. Researchers from the University of Cambridge have used a revolutionary Scanning Atomic Force Microscope in Japan to produce amazing footage of a protective enzyme unravelling the DNA of a virus trying to infect a bacterial host.

The film is available to view at: http://www.bbsrc.ac.uk/media/pressreleases/video_enzyme_unravelling_dna.html

The research, funded by the Biotechnology and Biological Sciences Research Council (BBSRC), will improve our understanding of how enzymes interact with DNA at a nanoscale but also has marked implications for scientists studying DNA repair, and could help in the search for cancer treatments.

Working with researchers in Edinburgh, Japan and India, the Cambridge team used a state-of-the-art microscope, only three of which exist in the world, and a technique known as fast-scan atomic force microscopy (AFM). Before now, scientists could only make assumptions as to how proteins and DNA interact based on indirect evidence but this new window on a fundamental biological process gives them the opportunity to view how the interaction actually occurs.

... more about:
»DNA »Interaction »Real »interact

Dr Robert Henderson, who led the Cambridge research, explains: "This is the first time that such a process has been seen in real time. To be able see these nano-mechanisms as they are really happening is incredibly exciting. We can actually see the enzyme 'threading' through a loop in the virus's DNA in order to lock on to and break it, a process known as DNA cleavage.

"The microscope and new techniques give us a clear view of the molecular interactions between proteins and DNA that we could only previously interpret indirectly. The indirect methods require scientists to make assumptions to interpret their data, and video footage like this can help to provide a more direct understanding of what is really happening.

"Standard technology for filming on this scale can only produce one image frame every 8 minutes. However, our new work allows one frame per 500 - or fewer, milliseconds."

The footage shows a bacterial type III restriction enzyme attaching itself to the DNA of a virus, in order to break the DNA before the virus has the chance to infect the bacterium. However, this could also provide a model for understanding how other enzymes and DNA, in any type of organism, including humans, interact.

"This helps us understand how enzymes recognise which bit of a DNA strand to latch onto, which is important in understanding how proteins repair damaged DNA. In the long term, this could help in the search for cancer treatments, as cancer sometimes occurs where DNA is damaged but enzymes do not behave correctly in order to repair it."

Steve Visscher, interim BBSRC Chief Executive, said: "BBSRC strongly supports the development of new tools and resources and this study clearly highlights the significance of cutting-edge technologies to bioscience research. It is essential that bioscientists can draw upon technologies from the physical and engineering sciences to improve their understanding of biological processes."

Michelle Kilfoyle | alfa
Further information:
http://www.bbsrc.ac.uk
http://www.bbsrc.ac.uk/media/pressreleases/video_enzyme_unravelling_dna.html

Further reports about: DNA Interaction Real interact

More articles from Life Sciences:

nachricht The dense vessel network regulates formation of thrombocytes in the bone marrow
25.07.2017 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht Fungi that evolved to eat wood offer new biomass conversion tool
25.07.2017 | University of Massachusetts at Amherst

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>