Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists reveal DNA-enzyme interaction with first ever real time footage

17.09.2007
For the first time scientists have been able to film, in real time, the nanoscale interaction of an enzyme and a DNA strand from an attacking virus. Researchers from the University of Cambridge have used a revolutionary Scanning Atomic Force Microscope in Japan to produce amazing footage of a protective enzyme unravelling the DNA of a virus trying to infect a bacterial host.

The film is available to view at: http://www.bbsrc.ac.uk/media/pressreleases/video_enzyme_unravelling_dna.html

The research, funded by the Biotechnology and Biological Sciences Research Council (BBSRC), will improve our understanding of how enzymes interact with DNA at a nanoscale but also has marked implications for scientists studying DNA repair, and could help in the search for cancer treatments.

Working with researchers in Edinburgh, Japan and India, the Cambridge team used a state-of-the-art microscope, only three of which exist in the world, and a technique known as fast-scan atomic force microscopy (AFM). Before now, scientists could only make assumptions as to how proteins and DNA interact based on indirect evidence but this new window on a fundamental biological process gives them the opportunity to view how the interaction actually occurs.

... more about:
»DNA »Interaction »Real »interact

Dr Robert Henderson, who led the Cambridge research, explains: "This is the first time that such a process has been seen in real time. To be able see these nano-mechanisms as they are really happening is incredibly exciting. We can actually see the enzyme 'threading' through a loop in the virus's DNA in order to lock on to and break it, a process known as DNA cleavage.

"The microscope and new techniques give us a clear view of the molecular interactions between proteins and DNA that we could only previously interpret indirectly. The indirect methods require scientists to make assumptions to interpret their data, and video footage like this can help to provide a more direct understanding of what is really happening.

"Standard technology for filming on this scale can only produce one image frame every 8 minutes. However, our new work allows one frame per 500 - or fewer, milliseconds."

The footage shows a bacterial type III restriction enzyme attaching itself to the DNA of a virus, in order to break the DNA before the virus has the chance to infect the bacterium. However, this could also provide a model for understanding how other enzymes and DNA, in any type of organism, including humans, interact.

"This helps us understand how enzymes recognise which bit of a DNA strand to latch onto, which is important in understanding how proteins repair damaged DNA. In the long term, this could help in the search for cancer treatments, as cancer sometimes occurs where DNA is damaged but enzymes do not behave correctly in order to repair it."

Steve Visscher, interim BBSRC Chief Executive, said: "BBSRC strongly supports the development of new tools and resources and this study clearly highlights the significance of cutting-edge technologies to bioscience research. It is essential that bioscientists can draw upon technologies from the physical and engineering sciences to improve their understanding of biological processes."

Michelle Kilfoyle | alfa
Further information:
http://www.bbsrc.ac.uk
http://www.bbsrc.ac.uk/media/pressreleases/video_enzyme_unravelling_dna.html

Further reports about: DNA Interaction Real interact

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>